Artículos de revistas sobre el tema "Quantum Hall regime"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Quantum Hall regime.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Quantum Hall regime".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Asano, Kenichi y Tsuneya Ando. "Photoluminescence in quantum Hall regime:". Physica B: Condensed Matter 249-251 (junio de 1998): 549–52. http://dx.doi.org/10.1016/s0921-4526(98)00183-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

BUHMANN, HARTMUT. "SPIN HALL EFFECTS IN HgTe QUANTUM WELL STRUCTURES". International Journal of Modern Physics B 23, n.º 12n13 (20 de mayo de 2009): 2551–55. http://dx.doi.org/10.1142/s0217979209061974.

Texto completo
Resumen
Due to a strong spin orbit interaction HgTe quantum well structures exhibit an unusual subband structure ordering which leads to some remarkable transport properties depending on the actual carrier density. Especially for quantum wells with an inverted band structure ordering, a strong Rashba-type spin orbit splitting gives rise to a strong spin Hall effect in the metallic regime and in the bulk insulating regime spin polarized edge channel transport leads to the formation of the quantum spin Hall effect. Gated quantum well structures have been used to explore these, the metallic and insulating, transport regimes experimentally.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Suzuki, Kenji y Yoshiyuki Ono. "Orbital Magnetization in Quantum Hall Regime". Journal of the Physical Society of Japan 66, n.º 11 (15 de noviembre de 1997): 3536–42. http://dx.doi.org/10.1143/jpsj.66.3536.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Amet, F., C. T. Ke, I. V. Borzenets, J. Wang, K. Watanabe, T. Taniguchi, R. S. Deacon et al. "Supercurrent in the quantum Hall regime". Science 352, n.º 6288 (19 de mayo de 2016): 966–69. http://dx.doi.org/10.1126/science.aad6203.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kramer, Bernhard, Stefan Kettemann y Tomi Ohtsuki. "Localization in the quantum Hall regime". Physica E: Low-dimensional Systems and Nanostructures 20, n.º 1-2 (diciembre de 2003): 172–87. http://dx.doi.org/10.1016/j.physe.2003.09.034.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Aoki, Hideo. "Localisation in the quantum hall regime". Surface Science 196, n.º 1-3 (enero de 1988): 107–19. http://dx.doi.org/10.1016/0039-6028(88)90672-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Pruisken, A. M. M. "Delocalization in the quantum Hall regime". Physics Reports 184, n.º 2-4 (diciembre de 1989): 213–17. http://dx.doi.org/10.1016/0370-1573(89)90040-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

He, Mengyun, Yu Huang, Huimin Sun, Yu Fu, Peng Zhang, Chenbo Zhao, Kang L. Wang, Guoqiang Yu y Qing Lin He. "Quantum anomalous Hall interferometer". Journal of Applied Physics 133, n.º 8 (28 de febrero de 2023): 084401. http://dx.doi.org/10.1063/5.0140086.

Texto completo
Resumen
Electronic interferometries in integer and fractional quantum Hall regimes have unfolded the coherence, correlation, and statistical properties of interfering constituents. This is addressed by investigating the roles played by the Aharonov–Bohm effect and Coulomb interactions on the oscillations of transmission/reflection. Here, we construct magnetic interferometers using Cr-doped (Bi,Sb)2Te3 films and demonstrate the electronic interferometry using chiral edge states in the quantum anomalous Hall regime. By controlling the extent of edge coupling and the amount of threading magnetic flux, distinct interfering patterns were observed, which highlight the interplay between the Coulomb interactions and Aharonov–Bohm interference by edge states. The observed interference is likely to exhibit a long-range coherence and robustness against thermal smearing probably owing to the long-range magnetic order. Our interferometer establishes a platform for (quasi)particle interference and topological qubits.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Shikin, V. B. "Inhomogeneous Hall-geometry sample in the quantum Hall regime". Journal of Experimental and Theoretical Physics Letters 73, n.º 5 (marzo de 2001): 246–49. http://dx.doi.org/10.1134/1.1371063.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

ISHIKAWA, K., T. AOYAMA, Y. ISHIZUKA y N. MAEDA. "FIELD THEORY OF ANISOTROPIC QUANTUM HALL GAS: METROLOGY AND A NOVEL QUANTUM HALL REGIME". International Journal of Modern Physics B 17, n.º 27 (30 de octubre de 2003): 4765–818. http://dx.doi.org/10.1142/s0217979203023112.

Texto completo
Resumen
The von Neumann lattice representation is a convenient representation for studying several intriguing physics of quantum Hall systems. In this formalism, electrons are mapped to lattice fermions. A topological invariant expression of the Hall conductance is derived and is used for the proof of the integer quantum Hall effect in the realistic situation. Anisotropic quantum Hall gas is investigated based on the Hartree–Fock approximation in the same formalism. Thermodynamic properties, transport properties, and unusual response under external modulations are found. Implications for the integer quantum Hall effect in the finite systems are also studied and a new quantum Hall regime with non-zero longitudinal resistance is shown to exist.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Nicopoulos, V. Nikos y S. A. Trugman. "Complex quantum dynamics in the integer quantum Hall regime". Physical Review B 45, n.º 19 (15 de mayo de 1992): 11004–15. http://dx.doi.org/10.1103/physrevb.45.11004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Kinaret, Jari M. "A quantum dot in the fractional quantum Hall regime". Physica B: Condensed Matter 189, n.º 1-4 (junio de 1993): 142–46. http://dx.doi.org/10.1016/0921-4526(93)90155-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Aoki, Hideo. "Double quantum dots in the fractional quantum Hall regime". Physica E: Low-dimensional Systems and Nanostructures 1, n.º 1-4 (enero de 1997): 198–203. http://dx.doi.org/10.1016/s1386-9477(97)00043-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Kasner, Marcus. "Electronic correlation in the quantum Hall regime". Annalen der Physik 514, n.º 3 (29 de enero de 2002): 175–252. http://dx.doi.org/10.1002/andp.20025140301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

MacDonald, A. H., E. H. Rezayi y David Keller. "Photoluminescence in the fractional quantum Hall regime". Physical Review Letters 68, n.º 12 (23 de marzo de 1992): 1939–42. http://dx.doi.org/10.1103/physrevlett.68.1939.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Schüller, C., K. B. Broocks, P. Schröter, C. Heyn, D. Heitmann, M. Bichler, W. Wegscheider, V. M. Apalkov y T. Chakraborty. "Charged Excitons in the Quantum Hall Regime". Acta Physica Polonica A 106, n.º 3 (septiembre de 2004): 341–53. http://dx.doi.org/10.12693/aphyspola.106.341.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

MacDonald, A. H. "Spin Bottlenecks in the Quantum Hall Regime". Physical Review Letters 83, n.º 16 (18 de octubre de 1999): 3262–65. http://dx.doi.org/10.1103/physrevlett.83.3262.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Fromer, N. A., C. Schüller, D. S. Chemla, T. V. Shahbazyan, I. E. Perakis, K. Maranowski y A. C. Gossard. "Electronic Dephasing in the Quantum Hall Regime". Physical Review Letters 83, n.º 22 (29 de noviembre de 1999): 4646–49. http://dx.doi.org/10.1103/physrevlett.83.4646.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Okulov, V. I., E. A. Pamyatnykh y A. T. Lonchakov. "Thermodynamic anomalous Hall effect: The quantum regime". Low Temperature Physics 40, n.º 11 (noviembre de 2014): 1032–34. http://dx.doi.org/10.1063/1.4901991.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Main, P. C., A. K. Geim, H. A. Carmona, C. V. Brown, T. J. Foster, R. Taboryski y P. E. Lindelof. "Resistance fluctuations in the quantum Hall regime". Physical Review B 50, n.º 7 (15 de agosto de 1994): 4450–55. http://dx.doi.org/10.1103/physrevb.50.4450.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Jain, J. K. "Composite Fermions in the Quantum Hall Regime". Science 266, n.º 5188 (18 de noviembre de 1994): 1199–202. http://dx.doi.org/10.1126/science.266.5188.1199.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Russell, P. A., F. F. Ouali, N. P. Hewett y L. J. Challis. "Power dissipation in the quantum Hall regime". Surface Science 229, n.º 1-3 (abril de 1990): 54–56. http://dx.doi.org/10.1016/0039-6028(90)90831-r.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Zheng, H. Z., K. K. Choi, D. C. Tsui y G. Weimann. "Size effect in the quantum Hall regime". Surface Science Letters 170, n.º 1-2 (abril de 1986): A229. http://dx.doi.org/10.1016/0167-2584(86)90553-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Nielsen, Hans. "Magnetoresistance oscillations in the quantum Hall regime". Physica B: Condensed Matter 175, n.º 1-3 (diciembre de 1991): 231–34. http://dx.doi.org/10.1016/0921-4526(91)90718-t.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Bhatt, R. N. y Wan Xin. "Mesoscopic effects in the quantum Hall regime". Pramana 58, n.º 2 (febrero de 2002): 271–83. http://dx.doi.org/10.1007/s12043-002-0013-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Ma, M. y A. Yu Zyuzin. "Josephson Effect in the Quantum Hall Regime". Europhysics Letters (EPL) 21, n.º 9 (20 de marzo de 1993): 941–45. http://dx.doi.org/10.1209/0295-5075/21/9/011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Zheng, H. Z., K. K. Choi, D. C. Tsui y G. Weimann. "Size effect in the quantum Hall regime". Surface Science 170, n.º 1-2 (abril de 1986): 209–13. http://dx.doi.org/10.1016/0039-6028(86)90963-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Yusa, G., H. Shtrikman y I. Bar-Joseph. "Photoluminescence in the fractional quantum Hall regime". Physica E: Low-dimensional Systems and Nanostructures 12, n.º 1-4 (enero de 2002): 49–54. http://dx.doi.org/10.1016/s1386-9477(01)00259-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Ando, Tsuneya. "Local Current Distribution in Quantum Hall Regime". Journal of the Physical Society of Japan 58, n.º 10 (15 de octubre de 1989): 3711–17. http://dx.doi.org/10.1143/jpsj.58.3711.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Nurmikko, Arto y Aron Pinczuk. "Optical Probes in the Quantum Hall Regime". Physics Today 46, n.º 6 (junio de 1993): 24–32. http://dx.doi.org/10.1063/1.881352.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Grunwald, A. y J. Hajdu. "Thermoelectric effects in the quantum Hall regime". Solid State Communications 63, n.º 4 (julio de 1987): 289–92. http://dx.doi.org/10.1016/0038-1098(87)90910-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Łydżba, Patrycja y Janusz Jacak. "Identifying Particle Correlations in Quantum Hall Regime". Annalen der Physik 530, n.º 3 (13 de noviembre de 2017): 1700221. http://dx.doi.org/10.1002/andp.201700221.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Page, D. A. y E. Brown. "Nonadiabatic Effects in the Quantum Hall Regime". Annals of Physics 223, n.º 1 (abril de 1993): 75–128. http://dx.doi.org/10.1006/aphy.1993.1027.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Kasner, Marcus. "Electronic correlation in the quantum Hall regime". Annalen der Physik 11, n.º 3 (marzo de 2002): 175–252. http://dx.doi.org/10.1002/1521-3889(200203)11:3<175::aid-andp175>3.0.co;2-a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

GIESBERS, A. J. M., U. ZEITLER, J. C. MAAN, D. REUTER y A. D. WIECK. "AHARONOV-BOHM EFFECT IN THE QUANTUM HALL REGIME". International Journal of Modern Physics B 21, n.º 08n09 (10 de abril de 2007): 1404–8. http://dx.doi.org/10.1142/s0217979207042902.

Texto completo
Resumen
We have fabricated quantum rings in a GaAs/GaAlAs heterostructure 2DEG by local anodic oxidation with an atomic force microscope. In low magnetic fields we observe Aharonov-Bohm oscillations with a period of 60 mT corresponding to an effective ring diameter of 300 nm. In the high field regime, between filling factors ν = 2/3 and ν = 3, we observe Aharonov-Bohm oscillations of quantum Hall edge channels with a surprisingly large period, Δ B = 163 mT , corresponding to an edge channel around the inner diameter of the ring.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

GRANGER, GHISLAIN, J. P. EISENSTEIN y J. L. RENO. "EDGE HEAT TRANSPORT IN THE QUANTUM HALL REGIME". International Journal of Modern Physics B 23, n.º 12n13 (20 de mayo de 2009): 2616–17. http://dx.doi.org/10.1142/s0217979209062074.

Texto completo
Resumen
We investigate the transport of heat in the integer quantized Hall regime. We make use of quantum point contacts (QPC's) positioned along the edge of a large quantum Hall droplet to both locally heat and locally detect temperature rises at the edge of the droplet. The detection scheme is thermoelectric, in essence identical to one introduced by Molenkamp, et al.1 in the early 1990's for heat transport experiments at zero magnetic field. At zero magnetic field we find that heat moves away from the heater QPC more or less isotropically. As expected from the Mott formula, we find a close connection between the detector QPC's thermoelectric response and the derivative, with respect to gate voltage, of its conductance. At high magnetic field our results show, not surprisingly, that heat transport is chiral in the quantum Hall regime. At total filling factor ν = 1 we inject a hot distribution of electrons into the edge with one of three QPC's. We observe a thermoelectric voltage at the other QPC's only if they are "downstream" from the heater. No signals are detected in the upstream direction. The magnitude of the detected thermal response is dependent upon the distance between the heater and detector QPC's. Additional measurements, in which a second QPC, between the heater and the detector, is used to drain away a portion of the injected heat, strongly suggest that the chiral heat transport we observe is indeed confined to the edge of the Hall droplet. Experiments are underway in the fractional quantum Hall regime to search for "upstream" heat propagation. Theory has suggested that such anti-chiral transport should exist at certain fractions, notably ν = 2/3, owing to backward-propagating neutral modes. Note from Publisher: This article contains the abstract only.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

CHENAUD, B., C. CHAUBET, B. JOUAULT, L. SAMINADAYAR, D. MAILLY, G. FAINI y A. CAVANNA. "ARE AHARONOV–BOHM EFFECT AND QUANTIZED HALL REGIME COMPATIBLE?" International Journal of Nanoscience 02, n.º 06 (diciembre de 2003): 535–41. http://dx.doi.org/10.1142/s0219581x03001656.

Texto completo
Resumen
We present calculations of the quantum oscillations appearing in the transmission of a mesoscopic GaAs / GaAlAs ring isolated by quantum point contacts. We show that the device acts as an electronic Fabry–Perot spectrometer in the quantum Hall effect regime, and discuss the effect of the coherence length of edge states.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Maasilta, I. J. y V. J. Goldman. "Energetics of quantum antidot states in the quantum Hall regime". Physical Review B 57, n.º 8 (15 de febrero de 1998): R4273—R4276. http://dx.doi.org/10.1103/physrevb.57.r4273.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Huber, M., M. Grayson, M. Rother, R. A. Deutschmann, W. Biberacher, W. Wegscheider, M. Bichler y G. Abstreiter. "Tunneling in the quantum Hall regime between orthogonal quantum wells". Physica E: Low-dimensional Systems and Nanostructures 12, n.º 1-4 (enero de 2002): 125–28. http://dx.doi.org/10.1016/s1386-9477(01)00283-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Pashitskii, E. A. "New quantum states in the fractional quantum Hall effect regime". Low Temperature Physics 31, n.º 2 (febrero de 2005): 171–78. http://dx.doi.org/10.1063/1.1867312.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Kettemann, Stefan. "Persistent Hall voltage and current in the fractional quantum Hall regime". Physical Review B 55, n.º 4 (15 de enero de 1997): 2512–22. http://dx.doi.org/10.1103/physrevb.55.2512.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

PELED, E., D. SHAHAR, Y. CHEN, E. DIEZ, D. L. SIVCO y A. Y. CHO. "QUANTUM HALL TRANSITIONS IN MESOSCOPIC SAMPLES". International Journal of Modern Physics B 18, n.º 27n29 (30 de noviembre de 2004): 3575–80. http://dx.doi.org/10.1142/s0217979204027049.

Texto completo
Resumen
We present an experimental study of four-terminal resistance fluctuations of mesoscopic samples in the quantum Hall regime. We show that in the vicinity of integer quantum Hall transitions there exist two kinds of correlations between the longitudinal and Hall resistances of the samples, one on either side of the transition region.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Polyakov, D. G. y B. I. Shklovskii. "Conductivity-peak broadening in the quantum Hall regime". Physical Review B 48, n.º 15 (15 de octubre de 1993): 11167–75. http://dx.doi.org/10.1103/physrevb.48.11167.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Knüppel, Patrick, Sylvain Ravets, Martin Kroner, Stefan Fält, Werner Wegscheider y Atac Imamoglu. "Nonlinear optics in the fractional quantum Hall regime". Nature 572, n.º 7767 (8 de julio de 2019): 91–94. http://dx.doi.org/10.1038/s41586-019-1356-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Hohls, F., U. Zeitler y R. J. Haug. "High Frequency Conductivity in the Quantum Hall Regime". Physical Review Letters 86, n.º 22 (28 de mayo de 2001): 5124–27. http://dx.doi.org/10.1103/physrevlett.86.5124.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Pruisken, A. M. M. y M. A. Baranov. "Cracking Coulomb Interactions in the Quantum Hall Regime". Europhysics Letters (EPL) 31, n.º 9 (20 de septiembre de 1995): 543–48. http://dx.doi.org/10.1209/0295-5075/31/9/007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

de C. Chamon, C. y X. G. Wen. "Resonant tunneling in the fractional quantum Hall regime". Physical Review Letters 70, n.º 17 (26 de abril de 1993): 2605–8. http://dx.doi.org/10.1103/physrevlett.70.2605.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Polyakov, D. G. "Spin-flip scattering in the quantum Hall regime". Physical Review B 53, n.º 23 (15 de junio de 1996): 15777–88. http://dx.doi.org/10.1103/physrevb.53.15777.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Oto, K., S. Takaoka y K. Murase. "Width of compressible strips in quantum Hall regime". Physica B: Condensed Matter 298, n.º 1-4 (abril de 2001): 18–23. http://dx.doi.org/10.1016/s0921-4526(01)00247-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Hernández, C., C. Consejo y C. Chaubet. "Admittance measurements in the quantum Hall effect regime". Physica B: Condensed Matter 453 (noviembre de 2014): 154–57. http://dx.doi.org/10.1016/j.physb.2014.03.091.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía