Literatura académica sobre el tema "Quantum electronics"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Quantum electronics".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Quantum electronics"
Mukhammadova, Dilafruz Ahmadovna. "The Role Of Quantum Electronics In Alternative Energy". American Journal of Applied sciences 03, n.º 01 (30 de enero de 2021): 69–78. http://dx.doi.org/10.37547/tajas/volume03issue01-12.
Texto completoZwanenburg, Floris A., Andrew S. Dzurak, Andrea Morello, Michelle Y. Simmons, Lloyd C. L. Hollenberg, Gerhard Klimeck, Sven Rogge, Susan N. Coppersmith y Mark A. Eriksson. "Silicon quantum electronics". Reviews of Modern Physics 85, n.º 3 (10 de julio de 2013): 961–1019. http://dx.doi.org/10.1103/revmodphys.85.961.
Texto completoSAKAKI, H. "Quantum Microstructures and Quantum Wave Electronics." Nihon Kessho Gakkaishi 33, n.º 3 (1991): 107–18. http://dx.doi.org/10.5940/jcrsj.33.107.
Texto completoGuo, Cheng, Jin Lin, Lian-Chen Han, Na Li, Li-Hua Sun, Fu-Tian Liang, Dong-Dong Li et al. "Low-latency readout electronics for dynamic superconducting quantum computing". AIP Advances 12, n.º 4 (1 de abril de 2022): 045024. http://dx.doi.org/10.1063/5.0088879.
Texto completoBorgarino, Mattia y Alessandro Badiali. "Quantum Gates for Electronics Engineers". Electronics 12, n.º 22 (15 de noviembre de 2023): 4664. http://dx.doi.org/10.3390/electronics12224664.
Texto completoLiu, Mengxia, Nuri Yazdani, Maksym Yarema, Maximilian Jansen, Vanessa Wood y Edward H. Sargent. "Colloidal quantum dot electronics". Nature Electronics 4, n.º 8 (agosto de 2021): 548–58. http://dx.doi.org/10.1038/s41928-021-00632-7.
Texto completoTaichenachev, Alexey V. "Department of Quantum Electronics". Siberian Journal of Physics 1, n.º 1 (2006): 83–84. http://dx.doi.org/10.54238/1818-7994-2006-1-1-83-84.
Texto completoSinclair, B. D. "Lasers and quantum electronics". Physics Bulletin 37, n.º 10 (octubre de 1986): 412. http://dx.doi.org/10.1088/0031-9112/37/10/013.
Texto completoDragoman, M. y D. Dragoman. "Graphene-based quantum electronics". Progress in Quantum Electronics 33, n.º 6 (noviembre de 2009): 165–214. http://dx.doi.org/10.1016/j.pquantelec.2009.08.001.
Texto completoRost, Jan-Michael. "Tubes for quantum electronics". Nature Photonics 4, n.º 2 (febrero de 2010): 74–75. http://dx.doi.org/10.1038/nphoton.2009.279.
Texto completoTesis sobre el tema "Quantum electronics"
Li, Elise Yu-Tzu. "Electronic structure and quantum conductance of molecular and nano electronics". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65270.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 129-137).
This thesis is dedicated to the application of a large-scale first-principles approach to study the electronic structure and quantum conductance of realistic nanomaterials. Three systems are studied using Landauer formalism, Green's function technique and maximally localized Wannier functions. The main focus of this thesis lies on clarifying the effect of chemical modifications on electron transport at the nanoscale, as well as on predicting and designing new type of molecular and nanoelectronic devices. In the first study, we suggest and investigate a quantum interference effect in the porphyrin family molecules. We show that the transmission through a porphyrin molecule at or near the Fermi level varies by orders of magnitude following hydrogen tautomerization. The switching behavior identified in porphyrins implies new application directions in single molecular devices and molecular-size memory elements. Moving on from single molecules to a larger scale, we study the effect of chemical functionalizations to the transport properties of carbon nanotubes. We propose several covalent functionalization schemes for carbon nanotubes which display switchable on/off conductance in metallic tubes. The switching action is achieved by reversible control of bond-cleavage chemistry in [1+2] cycloadditions, via the 8p 3 8s p 2 rehybridization it induces; this leads to remarkable changes of conductance even at very low degrees of functionalization. Several strategies for real-time control on the conductance of carbon nanotubes are then proposed. Such designer functional groups would allow for the first time direct control of the electrical properties of metallic carbon nanotubes, with extensive applications in nanoscale devices. In the last part of the thesis we address the issue of low electrical conductivity observed in carbon nanotube networks. We characterize intertube tunneling between carbon nanotube junctions with or without a covalent linker, and explore the possibility of improving intertube coupling and enhance electrical tunneling by transition metal adsorptions on CNT surfaces. The strong hybridization between transition metal d orbitals with the CNT [pi] orbitals serves as an excellent electrical bridge for a broken carbon nanotube junction. The binding and coupling between a transition metal atom and sandwiching nanotubes can be even stronger in case of nitrogendoped carbon nanotubes. Our studies suggest a more effective strategy than the current cross-linking methods used in carbon nanotube networks.
by Elise Yu-Tzu Li.
Ph.D.
Midgley, Stuart. "Quantum waveguide theory". University of Western Australia. School of Physics, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0036.
Texto completoLynch, Alastair M. "Low Cost and Flexible Electronics for Quantum Key Distribution and Quantum Information". Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520592.
Texto completoHinzer, Karin. "Semiconductor quantum dot lasers". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0003/MQ36702.pdf.
Texto completoEl, Kass Abdallah. "Milli-Kelvin Electronics at the Quantum-Classical Interface". Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/26889.
Texto completoLittle, Reginald Bernard. "The synthesis and characterization of some II-VI semiconductor quantum dots, quantum shells and quantum wells". Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/30573.
Texto completoNakanishi, Toshihiro. "Coupled-resonator-based metamaterials emulating quantum systems". 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/204563.
Texto completoKhalid, Ahmed Usman. "FPGA emulation of quantum circuits". Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98979.
Texto completoMcNeil, Robert Peter Gordon. "Surface acoustic wave quantum electronic devices". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610718.
Texto completoJiang, Jun. "A Quantum Chemical View of Molecular and Nano-Electronics". Doctoral thesis, Stockholm : Biotechnology, Kungliga tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4335.
Texto completoLibros sobre el tema "Quantum electronics"
R, Whinnery John, ed. Quantum electronics. New York: IEEE, 1992.
Buscar texto completoSalter, Heath. Quantum Electronics. New Delhi: World Technologies, 2011.
Buscar texto completoKose, Volkmar. Superconducting Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Buscar texto completoKose, Volkmar, ed. Superconducting Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1.
Texto completoVolkmar, Kose y Albrecht M, eds. Superconducting quantum electronics. Berlin: Springer-Verlag, 1989.
Buscar texto completoProkhorov, A. M. y I. Ursu, eds. Trends in Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-10624-2.
Texto completoHirayama, Yoshiro, Kazuhiko Hirakawa y Hiroshi Yamaguchi, eds. Quantum Hybrid Electronics and Materials. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1201-6.
Texto completoInstitute of Electrical and Electronics Engineers., ed. IEEE journal of quantum electronics. Piscatawy: IEEE, 1986.
Buscar texto completoIEEE Lasers and Electro-Optics Society. y Institute of Electrical and Electronics Engineers., eds. IEEE journal of quantum electronics. [s.l.]: IEEE Lasers and Electro-Optics Society, 1991.
Buscar texto completoConference on Lasers and Electro-Optics. International quantum electronics conference (IQEC). Washington, D.C: Optical Society of America, 2006.
Buscar texto completoCapítulos de libros sobre el tema "Quantum electronics"
Goser, Karl, Peter Glösekötter y Jan Dienstuhl. "Quantum Electronics". En Nanoelectronics and Nanosystems, 151–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05421-5_10.
Texto completoKolawole, Michael Olorunfunmi. "Elements of Quantum Electronics". En Electronics, 271–316. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003052913-9.
Texto completoSuits, Bryan H. "Quantum Logic". En Electronics for Physicists, 305–20. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36364-1_15.
Texto completoKawabata, A. "Quantum Wires". En Mesoscopic Physics and Electronics, 54–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71976-9_8.
Texto completoPevzner, Vadim y Karl Hess. "Quantum Ray Tracing: A New Approach to Quantum Transport in Mesoscopic Systems". En Computational Electronics, 227–30. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-2124-9_45.
Texto completoVan Haesendonck, C. y Y. Bruynseraede. "Quantum Interference in Normal Metals". En Superconducting Electronics, 19–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83885-9_2.
Texto completoLübbig, H. "Classical Dynamics of Josephson Tunnelling and Its Quantum Limitations". En Superconducting Quantum Electronics, 2–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_1.
Texto completoGutmann, P. y H. Bachmair. "Cryogenic Current Comparator Metrology". En Superconducting Quantum Electronics, 255–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_10.
Texto completoAlbrecht, M. y W. Kessel. "Fast SQUID Pseudo Random Generators". En Superconducting Quantum Electronics, 269–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_11.
Texto completoBrunk, G. "Modelling of Resistive Networks for Dispersive Tunnel Processes". En Superconducting Quantum Electronics, 24–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_2.
Texto completoActas de conferencias sobre el tema "Quantum electronics"
Arnold, John M. "Teaching quantum electronics to electronic engineering undergraduates". En Education and Training in Optics and Photonics 2001. SPIE, 2002. http://dx.doi.org/10.1117/12.468723.
Texto completoKrokhin, O. N. "Quantum Electronics 50th Jubilee". En SPIE Proceedings, editado por Yuri N. Kulchin, Jinping Ou, Oleg B. Vitrik y Zhi Zhou. SPIE, 2007. http://dx.doi.org/10.1117/12.726441.
Texto completoSaglamyurek, E., N. Sinclair, J. Jin, J. S. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler y W. Tittel. "Quantum Memory For Quantum Repeaters". En International Quantum Electronics Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/iqec.2011.i93.
Texto completoSchneider, Hans Christian y Weng W. Chow. "Quantum coherence in semiconductor quantum dots". En International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.ithf2.
Texto completo"2005 European Quantum Electronics Conference". En EQEC '05. European Quantum Electronics Conference, 2005. IEEE, 2005. http://dx.doi.org/10.1109/eqec.2005.1567171.
Texto completo"Joint Council on Quantum Electronics". En CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452324.
Texto completoBishnoi, Dimple. "Quantum dots: Rethinking the electronics". En INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946309.
Texto completoKrokhin, O. N. "Fifty Years of Quantum Electronics". En ZABABAKHIN SCIENTIFIC TALKS - 2005: International Conference on High Energy Density Physics. AIP, 2006. http://dx.doi.org/10.1063/1.2337172.
Texto completoSenami, Masato y Akitomo Tachibana. "Quantum chemical approaches to the electronic structures of nano-electronics materials". En 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2010. http://dx.doi.org/10.1109/icsict.2010.5667357.
Texto completoFurusawa, Akira. "Quantum Teleportation and Quantum Information Processing". En Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/qels.2010.qtha1.
Texto completoInformes sobre el tema "Quantum electronics"
De Heer, Walter A. Epitaxial Graphene Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2014. http://dx.doi.org/10.21236/ada604108.
Texto completoBocko, Mark F. y Marc J. Feldman. Quantum Computing with Superconducting Electronics. Fort Belvoir, VA: Defense Technical Information Center, febrero de 1998. http://dx.doi.org/10.21236/ada344625.
Texto completoO'Connell, R. F. Small Systems: Single Electronics/Quantum Transport. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1994. http://dx.doi.org/10.21236/ada298817.
Texto completovan der Heijden, Joost. Optimizing electron temperature in quantum dot devices. QDevil ApS, marzo de 2021. http://dx.doi.org/10.53109/ypdh3824.
Texto completoElmgren, Karson, Ashwin Acharya y Will Will Hunt. Superconductor Electronics Research. Center for Security and Emerging Technology, noviembre de 2021. http://dx.doi.org/10.51593/20210003.
Texto completoBraga, Davide. NECQST: Novel Electronics for Cryogenic Quantum Sensors Technology. Office of Scientific and Technical Information (OSTI), octubre de 2019. http://dx.doi.org/10.2172/1630711.
Texto completoFluegel, Brian. Fellowship in Physics/Modern Optics and Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1992. http://dx.doi.org/10.21236/ada253666.
Texto completoGaskill, J. D. Fellowship in Physics/Modern Optics and Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, febrero de 1990. http://dx.doi.org/10.21236/ada218772.
Texto completoSchoelkopf, R. J. y S. M. Girvin. Student Support for Quantum Computing With Single Cooper-Pair Electronics. Fort Belvoir, VA: Defense Technical Information Center, enero de 2006. http://dx.doi.org/10.21236/ada442606.
Texto completoSchoelkopf, R. J. y S. M. Girvin. Student Support for Quantum Computing with Single Cooper-Pair Electronics. Fort Belvoir, VA: Defense Technical Information Center, enero de 2006. http://dx.doi.org/10.21236/ada465023.
Texto completo