Artículos de revistas sobre el tema "Quantum dots"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Quantum dots.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Quantum dots".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Aharonovich, Igor. "Quantum dots light up ahead". Photonics Insights 1, n.º 2 (2022): C04. http://dx.doi.org/10.3788/pi.2022.c04.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kouwenhoven, Leo y Charles Marcus. "Quantum dots". Physics World 11, n.º 6 (junio de 1998): 35–40. http://dx.doi.org/10.1088/2058-7058/11/6/26.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Reed, Mark A. "Quantum Dots". Scientific American 268, n.º 1 (enero de 1993): 118–23. http://dx.doi.org/10.1038/scientificamerican0193-118.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Zhou, Xiaoyan, Liang Zhai y Jin Liu. "Epitaxial quantum dots: a semiconductor launchpad for photonic quantum technologies". Photonics Insights 1, n.º 2 (2022): R07. http://dx.doi.org/10.3788/pi.2022.r07.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Artemyev, M. V. y U. Woggon. "Quantum dots in photonic dots". Applied Physics Letters 76, n.º 11 (13 de marzo de 2000): 1353–55. http://dx.doi.org/10.1063/1.126029.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Loss, Daniel y David P. DiVincenzo. "Quantum computation with quantum dots". Physical Review A 57, n.º 1 (1 de enero de 1998): 120–26. http://dx.doi.org/10.1103/physreva.57.120.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

López, Juan Carlos. "Quantum leap for quantum dots". Nature Reviews Neuroscience 4, n.º 3 (marzo de 2003): 163. http://dx.doi.org/10.1038/nrn1066.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Zunger, Alex. "Semiconductor Quantum Dots". MRS Bulletin 23, n.º 2 (febrero de 1998): 15–17. http://dx.doi.org/10.1557/s0883769400031213.

Texto completo
Resumen
Semiconductor “quantum dots” refer to nanometer-sized, giant (103–105 atoms) molecules made from ordinary inorganic semiconductor materials such as Si, InP, CdSe, etc. They are larger than the traditional “molecular clusters” (~1 nanometer containing ≤100 atoms) common in chemistry yet smaller than the structures of the order of a micron, manufactured by current electronic-industry lithographic techniques. Quantum dots can be made by colloidal chemistry techniques (see the articles by Alivisatos and by Nozik and Mićić in this issue), by controlled coarsening during epitaxial growth (see the article by Bimberg et al. in this issue), by size fluctuations in conventional quantum wells (see the article by Gammon in this issue), or via nano-fabrication (see the article by Tarucha in this issue).
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Barachevsky, V. A. "Photochromic quantum dots". Izvestiya vysshikh uchebnykh zavedenii. Fizika, n.º 11 (2021): 30–44. http://dx.doi.org/10.17223/00213411/64/11/30.

Texto completo
Resumen
The analysis of the results of fundamental and applied research in the field of creation of photochromic nanoparticles of the "core-shell" type, in which semiconductor nanocrystals - quantum dots were used as a core, and the shell included physically or chemically sorbed molecules of photochromic thermally relaxing (spiropyrans, spirooxazines , chromenes, azo compounds) or thermally irreversible (diarylethenes, fulgimides) compounds. It has been shown that such nanoparticles provide reversible modulation of the QD radiation intensity, which can be used in information and biomedical technologies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Barachevsky, V. A. "Photochromic Quantum Dots". Russian Physics Journal 64, n.º 11 (marzo de 2022): 2017–34. http://dx.doi.org/10.1007/s11182-022-02551-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Evanko, Daniel. "Bioluminescent quantum dots". Nature Methods 3, n.º 4 (abril de 2006): 240. http://dx.doi.org/10.1038/nmeth0406-240a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Lindberg, V. y B. Hellsing. "Metallic quantum dots". Journal of Physics: Condensed Matter 17, n.º 13 (19 de marzo de 2005): S1075—S1094. http://dx.doi.org/10.1088/0953-8984/17/13/004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Kaputkina, N. E. y Yu E. Lozovik. "“Spherical” quantum dots". Physics of the Solid State 40, n.º 11 (noviembre de 1998): 1935–36. http://dx.doi.org/10.1134/1.1130690.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Dukes, Albert D., James R. McBride y Sandra Rosenthal. "Luminescent Quantum Dots". ECS Transactions 33, n.º 33 (17 de diciembre de 2019): 3–16. http://dx.doi.org/10.1149/1.3578017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Tinkham, M. "Metallic quantum dots". Philosophical Magazine B 79, n.º 9 (septiembre de 1999): 1267–80. http://dx.doi.org/10.1080/13642819908216970.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Han, Gang, Taleb Mokari, Caroline Ajo-Franklin y Bruce E. Cohen. "Caged Quantum Dots". Journal of the American Chemical Society 130, n.º 47 (26 de noviembre de 2008): 15811–13. http://dx.doi.org/10.1021/ja804948s.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Pile, David. "Intraband quantum dots". Nature Photonics 9, n.º 1 (23 de diciembre de 2014): 7. http://dx.doi.org/10.1038/nphoton.2014.317.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Guyot-Sionnest, Philippe. "Colloidal quantum dots". Comptes Rendus Physique 9, n.º 8 (octubre de 2008): 777–87. http://dx.doi.org/10.1016/j.crhy.2008.10.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Zhou, Weidong y James J. Coleman. "Semiconductor quantum dots". Current Opinion in Solid State and Materials Science 20, n.º 6 (diciembre de 2016): 352–60. http://dx.doi.org/10.1016/j.cossms.2016.06.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Gershoni, David. "Pyramidal quantum dots". Nature Photonics 4, n.º 5 (mayo de 2010): 271–72. http://dx.doi.org/10.1038/nphoton.2010.96.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Nomura, Masahiro y Yasuhiko Arakawa. "Shaking quantum dots". Nature Photonics 6, n.º 1 (22 de diciembre de 2011): 9–10. http://dx.doi.org/10.1038/nphoton.2011.323.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Golan, Yuval, Lev Margulis, Gary Hodes, Israel Rubinstein y John L. Hutchison. "Electrodeposited quantum dots". Surface Science 311, n.º 1-2 (mayo de 1994): L633—L640. http://dx.doi.org/10.1016/0039-6028(94)90465-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Gaisler, A. V., I. A. Derebezov, V. A. Gaisler, D. V. Dmitriev, A. I. Toropov, A. S. Kozhukhov, D. V. Shcheglov, A. V. Latyshev y A. L. Aseev. "AlInAs quantum dots". JETP Letters 105, n.º 2 (enero de 2017): 103–9. http://dx.doi.org/10.1134/s0021364017020096.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Vishnoi, Pratap, Madhulika Mazumder, Manaswee Barua, Swapan K. Pati y C. N. R. Rao. "Phosphorene quantum dots". Chemical Physics Letters 699 (mayo de 2018): 223–28. http://dx.doi.org/10.1016/j.cplett.2018.03.069.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

H. Sargent, E. "Infrared Quantum Dots". Advanced Materials 17, n.º 5 (8 de marzo de 2005): 515–22. http://dx.doi.org/10.1002/adma.200401552.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Nozik, A. J., H. Uchida, P. V. Kamat y C. Curtis. "GaAs Quantum Dots". Israel Journal of Chemistry 33, n.º 1 (1993): 15–20. http://dx.doi.org/10.1002/ijch.199300004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Bacon, Mitchell, Siobhan J. Bradley y Thomas Nann. "Graphene Quantum Dots". Particle & Particle Systems Characterization 31, n.º 4 (27 de noviembre de 2013): 415–28. http://dx.doi.org/10.1002/ppsc.201300252.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Tárnok, Attila. "Quantum of dots". Cytometry Part A 77A, n.º 10 (24 de septiembre de 2010): 905–6. http://dx.doi.org/10.1002/cyto.a.20971.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Schneider, H. C., W. W. Chow, P. M. Smowton, E. J. Pearce y S. W. Koch. "Quantum Dots: Anomalous Carrier-Induced Dispersion in Semiconductor Quantum Dots". Optics and Photonics News 13, n.º 12 (1 de diciembre de 2002): 50. http://dx.doi.org/10.1364/opn.13.12.000050.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Sánchez Pérez, Karla J., J. C. García-Melgarejo y J. J. Sánchez-Mondragón. "Semi classical quantum dots in their own micro cavity". Acta Universitaria 23 (6 de diciembre de 2013): 23–26. http://dx.doi.org/10.15174/au.2013.557.

Texto completo
Resumen
Among quantum dots there is an interaction called Foerster interaction, it consists on the transfer of one exciton from a quantum dot to another in a non-radiative energy transfer mechanism. In this work, we develop a model of the interaction of a pair of coupled Quan­tum Dots (QDs), each one in its own micro cavity, interacting with its own classical field.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Shimada, Hiroshi, Youiti Ootuka, Shun-ichi Kobayashi, Shingo Katsumoto y Akira Endo. "Quantum Charge Fluctuations in Quantum Dots". Journal of the Physical Society of Japan 69, n.º 3 (15 de marzo de 2000): 828–35. http://dx.doi.org/10.1143/jpsj.69.828.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Burkard, Guido, Daniel Loss y David P. DiVincenzo. "Coupled quantum dots as quantum gates". Physical Review B 59, n.º 3 (15 de enero de 1999): 2070–78. http://dx.doi.org/10.1103/physrevb.59.2070.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Lozada-Cassou, M., Shi-Hai Dong y Jiang Yu. "Quantum features of semiconductor quantum dots". Physics Letters A 331, n.º 1-2 (octubre de 2004): 45–52. http://dx.doi.org/10.1016/j.physleta.2004.08.047.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Molotkov, S. N. y S. S. Nazin. "Quantum cryptography based on quantum dots". Journal of Experimental and Theoretical Physics Letters 63, n.º 8 (abril de 1996): 687–93. http://dx.doi.org/10.1134/1.567087.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Ferry, D. K., R. A. Akis, D. P. Pivin Jr, J. P. Bird, N. Holmberg, F. Badrieh y D. Vasileska. "Quantum transport in ballistic quantum dots". Physica E: Low-dimensional Systems and Nanostructures 3, n.º 1-3 (octubre de 1998): 137–44. http://dx.doi.org/10.1016/s1386-9477(98)00228-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Kiraz, A., C. Reese, B. Gayral, Lidong Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu y A. Imamoglu. "Cavity-quantum electrodynamics with quantum dots". Journal of Optics B: Quantum and Semiclassical Optics 5, n.º 2 (26 de febrero de 2003): 129–37. http://dx.doi.org/10.1088/1464-4266/5/2/303.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Pachos, Jiannis K. y Vlatko Vedral. "Topological quantum gates with quantum dots". Journal of Optics B: Quantum and Semiclassical Optics 5, n.º 6 (16 de octubre de 2003): S643—S646. http://dx.doi.org/10.1088/1464-4266/5/6/016.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Masumoto, Yasuaki, Ivan V. Ignatiev, Kazuhiro Nishibayashi, Tsuyoshi Okuno, Sergey Yu Verbin y Irina A. Yugova. "Quantum beats in semiconductor quantum dots". Journal of Luminescence 108, n.º 1-4 (junio de 2004): 177–80. http://dx.doi.org/10.1016/j.jlumin.2004.01.038.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Roy, Xavier, Christine L. Schenck, Seokhoon Ahn, Roger A. Lalancette, Latha Venkataraman, Colin Nuckolls y Michael L. Steigerwald. "Quantum Soldering of Individual Quantum Dots". Angewandte Chemie 124, n.º 50 (7 de noviembre de 2012): 12641–44. http://dx.doi.org/10.1002/ange.201206301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Bryant, Garnett W. "Quantum dots in quantum well structures". Journal of Luminescence 70, n.º 1-6 (octubre de 1996): 108–19. http://dx.doi.org/10.1016/0022-2313(96)00048-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Huang, Zhongkai, Jinfeng Qu, Xiangyang Peng, Wenliang Liu, Kaiwang Zhang, Xiaolin Wei y Jianxin Zhong. "Quantum confinement in graphene quantum dots". physica status solidi (RRL) - Rapid Research Letters 8, n.º 5 (31 de marzo de 2014): 436–40. http://dx.doi.org/10.1002/pssr.201409064.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Roy, Xavier, Christine L. Schenck, Seokhoon Ahn, Roger A. Lalancette, Latha Venkataraman, Colin Nuckolls y Michael L. Steigerwald. "Quantum Soldering of Individual Quantum Dots". Angewandte Chemie International Edition 51, n.º 50 (7 de noviembre de 2012): 12473–76. http://dx.doi.org/10.1002/anie.201206301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Wang, Feng, Niladri S. Karan, Hue Minh Nguyen, Benjamin D. Mangum, Yagnaseni Ghosh, Chris J. Sheehan, Jennifer A. Hollingsworth y Han Htoon. "Quantum Dots: Quantum Optical Signature of Plasmonically Coupled Nanocrystal Quantum Dots (Small 38/2015)". Small 11, n.º 38 (octubre de 2015): 5176. http://dx.doi.org/10.1002/smll.201570238.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Kaur, Haleena. "Cellular uptake of aptamer by Quantum Dots (QDs)". Biomarkers and Drug Discovery 1, n.º 1 (5 de noviembre de 2018): 01. http://dx.doi.org/10.31579/2642-9799/004.

Texto completo
Resumen
Aptamers are short single stranded oligonucleotide sequences that exhibit high binding affinity and high specificity against their target molecule. Binding affinity and specificity are crucial features for aptamers in order to exploit their therapeutic and diagnostic potential and to make them an appealing candidate for the commercial market1,2. Aptamers contain functional moieties that can fold into different conformation such as hairpin stem and loops, G-quadruplexes, and pseudoknots. A study led by Dr Harleen Kaur involving unique stem-loop truncation strategy was employed to find the binding domain in a 66-mer long DNA aptamer sequence against the heparin binding domain of vascular endothelial growth factor (VEGF165) protein1. The results from the work demonstrated identification of a 26-mer long aptamer sequence referred as SL2-B in the paper with improvement in the binding affinity by more than 200-folds (Kd = 0.5nM) against VEGF protein. To improve the biostability of the aptamer in the biological fluids, the phosphorothioate linkages (PS-linkages) in the phosphate backbone of the DNA were introduced at the 5’-and 3’-termini of the obtained SL2-B aptamer sequence. The PS-modified SL2-B aptamer sequence demonstrated significant improvement in the stability without comprising
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Kaur, Haleena. "Cellular uptake of aptamer by Quantum Dots (QDs)". Biomarkers and Drug Discovery 1, n.º 1 (5 de noviembre de 2018): 01. http://dx.doi.org/10.31579/2642-9799/003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Stride, John Arron y Fatemeh Mirnajafizadeh. "A Brief Review on Core/shell Quantum Dots". SDRP Journal of Nanotechnology & Material Science 3, n.º 1 (2020): 121–26. http://dx.doi.org/10.25177/jnms.3.1.ra.10624.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

JX, Guo. "Graphene-Quantum Dots Hybrid Based Dual Band Photodetector". Physical Science & Biophysics Journal 7, n.º 1 (5 de enero de 2023): 1–4. http://dx.doi.org/10.23880/psbj-16000234.

Texto completo
Resumen
Graphene, which can detect a broad spectrum from ultraviolet to terahertz, is a promising photodetector material because it offers a broad spectral bandwidth and fast response times. However, the nature of weak light absorption has limited the responsivity of graphene-based photodetectors. Here, we demonstrate a responsivity of up to ∼6.7×103 A/W in a hybrid photodetector that consists of monolayer or bilayer graphene covered with a thin film of colloidal quantum dots. At the same time, benefits from gate-tunability, the device can response from the short-wavelength infrared to the visible, and compatibility with current circuit technologies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Dudu, Veronica, Melissa Ramcharan, M. Lane Gilchrist, Eric C. Holland y Maribel Vazquez. "Liposome Delivery of Quantum Dots to the Cytosol of Live Cells". Journal of Nanoscience and Nanotechnology 8, n.º 5 (1 de mayo de 2008): 2293–300. http://dx.doi.org/10.1166/jnn.2008.185.

Texto completo
Resumen
An increasing number of studies have demonstrated the multiple advantages of using nanocrystals, such as Quantum dots, for biological imaging. Quantum dots functionalized with biomolecules on their surfaces were shown to be able to bind to specific extracellular targets via specific recognition and to be internalized inside the cells, thereby allowing the imaging of intracellular pathways. However, the use of Quantum dots for live tracking of intracellular molecules is relatively limited because of the difficulties encountered during the induction of Quantum dots across living cell membranes. In this study we show that cationic liposomes can deliver low concentrations of non-targeted Quantum dots into the cytosol of living cells via a lipid-mediated fusion with the cell membrane. The intracellular Quantum dots exhibit aggregation that appears dependent upon their concentration, but does not visibly affect cell viability. Our results point towards the use of cationic liposomes as an effective delivery system for targeted Quantum dots within the cell cytosol, which would facilitate live cell imaging of the labeled molecules.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Kaur, Ajaypal, Komal Pandey, Ramandeep Kaur, Nisha Vashishat y Manpreet Kaur. "Nanocomposites of Carbon Quantum Dots and Graphene Quantum Dots: Environmental Applications as Sensors". Chemosensors 10, n.º 9 (15 de septiembre de 2022): 367. http://dx.doi.org/10.3390/chemosensors10090367.

Texto completo
Resumen
Carbon-based quantum dots and their nanocomposites have sparked immense interest for researchers as sensors due to their attractive physico-chemical properties caused by edge effects and quantum confinement. In this review article, we have discussed the synthesis and application of nanocomposites of graphene quantum dots (GQDs) and carbon quantum dots (CQDs). Different synthetic strategies for CQDs, GQDs, and their nanocomposites, are categorized as top-down and bottom-up approaches which include laser ablation, arc-discharge, chemical oxidation, ultrasonication, oxidative cleavage, microwave synthesis, thermal decomposition, solvothermal or hydrothermal method, stepwise organic synthesis, carbonization from small molecules or polymers, and impregnation. A comparison of methodologies is presented. The environmental application of nanocomposites of CQDs/GQDs and pristine quantum dots as sensors are presented in detail. Their applications envisage important domains dealing with the sensing of pollutant molecules. Recent advances and future perspective in the use of CQDs, GQDs, and their nanocomposites as sensors are also explored.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Dong, Yongqiang, Jianpeng Lin, Yingmei Chen, Fengfu Fu, Yuwu Chi y Guonan Chen. "Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals". Nanoscale 6, n.º 13 (2014): 7410–15. http://dx.doi.org/10.1039/c4nr01482k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía