Literatura académica sobre el tema "Quantum Dots (QD)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Quantum Dots (QD)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Quantum Dots (QD)"
Prevenslik, Thomas. "Quantum Dots by QED". Advanced Materials Research 31 (noviembre de 2007): 1–3. http://dx.doi.org/10.4028/www.scientific.net/amr.31.1.
Texto completoHan, Chang-Yeol, Hyun-Sik Kim y Heesun Yang. "Quantum Dots and Applications". Materials 13, n.º 4 (18 de febrero de 2020): 897. http://dx.doi.org/10.3390/ma13040897.
Texto completoLobnik, Aleksandra, Špela Korent Urek y Matejka Turel. "Quantum Dots Based Optical Sensors". Defect and Diffusion Forum 326-328 (abril de 2012): 682–89. http://dx.doi.org/10.4028/www.scientific.net/ddf.326-328.682.
Texto completoGhazi, Haddou EL. "Analysis of Quantum Dot Uses for Drug Delivery: Opportunities and Challenges". Nanomedicine & Nanotechnology Open Access 9, n.º 2 (2024): 1–3. http://dx.doi.org/10.23880/nnoa-16000302.
Texto completoLedentsov, Nikolai N., Victor M. Ustinov, Dieter Bimberg, James A. Lott y Zh I. Alferov. "APPLICATIONS OF QUANTUM DOTS IN SEMICONDUCTOR LASERS". International Journal of High Speed Electronics and Systems 12, n.º 01 (marzo de 2002): 177–205. http://dx.doi.org/10.1142/s0129156402001150.
Texto completoGajjela, Raja S. R. y Paul M. Koenraad. "Atomic-Scale Characterization of Droplet Epitaxy Quantum Dots". Nanomaterials 11, n.º 1 (3 de enero de 2021): 85. http://dx.doi.org/10.3390/nano11010085.
Texto completoLee, Changmin, Eunhee Nam, Woosuk Lee y Heeyeop Chae. "Hydrosilylation of Reactive Quantum Dots and Siloxanes for Stable Quantum Dot Films". Polymers 11, n.º 5 (18 de mayo de 2019): 905. http://dx.doi.org/10.3390/polym11050905.
Texto completoZhang, Liyao, Yuxin Song, Qimiao Chen, Zhongyunshen Zhu y Shumin Wang. "InPBi Quantum Dots for Super-Luminescence Diodes". Nanomaterials 8, n.º 9 (10 de septiembre de 2018): 705. http://dx.doi.org/10.3390/nano8090705.
Texto completoJacak, L., J. Krasnyj, D. Jacak, R. Gonczarek, M. Krzyżosiak y P. Machnikowski. "Spin-Based Quantum Information Processing in Magnetic Quantum Dots". Open Systems & Information Dynamics 12, n.º 02 (junio de 2005): 133–41. http://dx.doi.org/10.1007/s11080-005-5724-0.
Texto completoSilva Filho, José Maria C. da, Victor A. Ermakov, Luiz G. Bonato, Ana F. Nogueira y Francisco C. Marques. "Self-Organized Lead(II) Sulfide Quantum Dots Superlattice". MRS Advances 2, n.º 15 (2017): 841–46. http://dx.doi.org/10.1557/adv.2017.246.
Texto completoTesis sobre el tema "Quantum Dots (QD)"
Reinhart, Chase Collier. "Formulation of Colloidal Suspensions of 3-mercaptopropionic acid capped PbS Quantum Dots as Solution Processable QD "Inks" for Optoelectronic Applications". PDXScholar, 2016. http://pdxscholar.library.pdx.edu/open_access_etds/3289.
Texto completoStubbs, Stuart Kenneth. "Photo-physics and applications of colloidal quantum dots". Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/photophysics-and-applications-of-colloidal-quantum-dots(2391c0ce-b086-47a8-8600-a833657f85bc).html.
Texto completoKethineedi, Venkata Ramana. "Synthesis and Applications of Luminescent Quantum Dots in Bioassays". ScholarWorks@UNO, 2011. http://scholarworks.uno.edu/td/1416.
Texto completoDrillat, François. "Encapsulation de Quantum Dots dans des copolymères blocs : formation de structures supramoléculaires organisées et utilisation en biologie comme nouveau marqueur fluorescent". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2008. http://tel.archives-ouvertes.fr/tel-00812058.
Texto completoJames, Daniel. "Fabrication and electrical characterisation of quantum dots : uniform size distributions and the observation of unusual electrical characteristics and metastability". Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/fabrication-and-electrical-characterisation-of-quantum-dots-uniform-size-distributions-and-the-observation-of-unusual-electrical-characteristics-and-metastability(01bb9182-5290-4ad1-b6a4-3aed3970dbcf).html.
Texto completoXiaohong, Tang y Yin Zongyou. "MOCVD Growths of the InAs QD Structures for Mid-IR Emissions". Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35383.
Texto completoYe, Xinying. "SEMI-AUTOMATIC AND INTERACTIVE VISUALIZATION OF QUANTUM DOT NANO-STRUCTURES". University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1195496291.
Texto completoGuellil, Imene. "Nano-fonctionnalisation par FIB haute résolution de silicium". Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0361.
Texto completoThe goal of this work is to develop a process for the elaboration of silicon-germanium (SiGe) quantum dots (QDs) with compositions ranging from Si to pure Ge, and allowing to obtain semiconducting QDs with sufficiently small sizes to obtain quantum confinement. For this purpose, we have used a combination of different techniques: molecular beam epitaxy, focused ion beam lithography (FIBL) and heterogeneous solid state dewetting. In this context, the aim of this research is on the one hand to develop a new FIB that can be coupled to the ultra-high vacuum molecular beam epitaxy growth chamber, and on the other hand to realize two applications: (i) nanopatterns for the self-organisation of Si and Ge QDs and (ii) nano-implantations of Si and Ge. We used FIBL with energy-filtered liquid metal alloy ion sources (LMAIS) using non-polluting ions (Si and Ge) for the milling of conventional microelectronic substrates such as SiGe on silicon-on-insulator (SGOI). The nanopatterns must be totally free of pollution and with variable and perfectly controlled characteristics (size, density, depth). The morphology of the nanopatterns is then characterized in-situ by scanning electron microscopy (SEM), and the depth is determined ex-situ by atomic force microscopy (AFM). The nanopatterns made by FIBL were compared on the one hand to plasma etchings with He and Ne and on the other hand to the etchings obtained by electronic lithography (EBL). Nanoimplantations of Si and Ge ions were realised in diamond and in ultra-thin SGOI for the fabrication of local defects
Pereira, Geovane Módena. "Criptografia de qubits de férmions de Majorana por meio de estados ligados no contínuo". Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/152724.
Texto completoApproved for entry into archive by Ana Paula Santulo Custódio de Medeiros null (asantulo@rc.unesp.br) on 2018-02-14T16:11:32Z (GMT) No. of bitstreams: 1 pereira_gm_me_rcla.pdf: 7420427 bytes, checksum: 0a0aec5beec2ecdd26883e0f4524844f (MD5)
Made available in DSpace on 2018-02-14T16:11:32Z (GMT). No. of bitstreams: 1 pereira_gm_me_rcla.pdf: 7420427 bytes, checksum: 0a0aec5beec2ecdd26883e0f4524844f (MD5) Previous issue date: 2017-12-01
Nós investigamos teoricamente uma cadeia topológica de Kitaev conectada a dois pontos quânticos (QDs) hibridizados a terminais metálicos. Neste sistema, observamos o surgimento de dois fenômenos marcantes: (i) uma decriptografia do Férmion de Majorana (MF), que é detectado por meio de medições de condutância devido ao estado de vazamento assimétrico do qubit de MFs nos QDs; (ii) criptografia desse qubit em ambos os QDs quando o vazamento é simétrico. Em tal regime, temos portanto a criptografia proposta, uma vez que o qubit de MFs separa-se nos QDs como estados ligados no contínuo (BICs), os quais não são detectáveis em experimentos de condutância.
We theoretically investigate a topological Kitaev chain connected to a double quantum-dot (QD) setup hybridized with metallic leads. In this system, we observe the emergence of two striking phenomena: i) a decrypted Majorana Fermion (MF) - qubit recorded over a single QD, which is detectable by means of conductance measurements due to the asymmetrical MF-leaked state into the QDs; ii) an encrypted qubit recorded in both QDs when the leakage is symmetrical. In such a regime, we have a cryptography-like manifestation, since the MF-qubit becomes bound states in the continuum, which is not detectable in conductance experiments.
Bain, Fiona Mair. "Yb:tungstate waveguide lasers". Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/1698.
Texto completoLibros sobre el tema "Quantum Dots (QD)"
Zrazhevskiy, P. y X. Gao. Bioconjugated quantum dots for tumor molecular imaging and profiling. Editado por A. V. Narlikar y Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.17.
Texto completoMelnikov, D. V., J. Kim, L. X. Zhang y J. P. Leburton. Few-electron quantum-dot spintronics. Editado por A. V. Narlikar y Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.2.
Texto completoGrove-Rasmussen, K. Hybrid Superconducting Devices Based on Quantum Wires. Editado por A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.16.
Texto completoCapítulos de libros sobre el tema "Quantum Dots (QD)"
Hashimoto, Masanori, Takuto Matsumoto, Masafumi Tanaka, Ryo Shirai, Naoya Tate, Masaki Nakagawa, Takashi Tokuda, Kiyotaka Sasagawa, Jun Ohta y Jaehoon Yu. "Exploring Integrated Device Implementation for FRET-Based Optical Reservoir Computing". En Photonic Neural Networks with Spatiotemporal Dynamics, 89–108. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5072-0_5.
Texto completoNiveria, Karishma, Priyanka Singh, Monika Yadav y Anita K. Verma. "Quantum Dot (QD)-Induced Toxicity and Biocompatibility". En Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors, 181–211. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-19531-0_8.
Texto completoRöhm, André. "Modes of Operation of QD Lasers". En Dynamic Scenarios in Two-State Quantum Dot Lasers, 28–36. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09402-7_3.
Texto completoRöhm, André. "Understanding QD Laser Regimes of Operation". En Dynamic Scenarios in Two-State Quantum Dot Lasers, 37–59. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09402-7_4.
Texto completoBreuer, Stefan, Dimitris Syvridis y Edik U. Rafailov. "Ultra-Short-Pulse QD Edge-Emitting Lasers". En The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics, 43–94. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527665587.ch2.
Texto completoSengupta, Saumya y Subhananda Chakrabarti. "Structural and Optical Characterization of Bilayer QD Heterostructures". En Structural, Optical and Spectral Behaviour of InAs-based Quantum Dot Heterostructures, 25–42. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5702-1_3.
Texto completoLange, Alexander y Armin Wedel. "Organic Light-Emitting Diode (OLED) and Quantum Dot (QD) Inks and Application". En Handbook of Industrial Inkjet Printing, 225–38. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527687169.ch12.
Texto completoLoza-Alvarez, Pablo, Rodrigo Avilés-Espinosa, Steve J. Matcher, D. Childs y Sergei G. Sokolovski. "QD Ultrafast and Continuous Wavelength Laser Diodes for Applications in Biology and Medicine". En The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics, 171–230. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527665587.ch5.
Texto completoSamukawa, Seiji. "Fabrication of 3D Quantum Dot Array by Fusion of Biotemplate and Neutral Beam Etching II: Application to QD Solar Cells and Laser/LED". En Intelligent Nanosystems for Energy, Information and Biological Technologies, 169–92. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56429-4_10.
Texto completoGonzález De la Cruz, Gerardo, Lourdes Rodríguez-Fragoso, Patricia Rodríguez-Fragoso y Anahi Rodríguez-López. "Toxicity of Quantum Dots". En Toxicity of Nanoparticles - Recent Advances and New Perspectives. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.112073.
Texto completoActas de conferencias sobre el tema "Quantum Dots (QD)"
Nishi, Kenichi, Hideaki Saito y Shigeo Sugou. "Vertical cavity surface emitting laser with self-assembled quantum dots". En Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/qo.1997.qwa.2.
Texto completoMalinowski, Pawel, David Cheyns, Vladimir Pejovic, Luis Moreno Hagelsieb, Griet Uytterhoeven, Jiwon Lee, Epimitheas Georgitzikis et al. "High image quality QD image sensors for the SWIR range". En Internet Conference for Quantum Dots. València: Fundació Scito, 2020. http://dx.doi.org/10.29363/nanoge.icqd.2020.034.
Texto completoSandmann, J. H. H., S. Grosse, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki y J. Ahopelto. "Carrier Relaxation and Recombination Dynamics in InGaAs/GaAs quantum dots". En International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.thb.3.
Texto completoM. Cossairt, Brandi. "QD Nucleation and Growth – Beyond Classical Mechanisms". En Online school on Fundamentals of Semiconductive Quantum Dots. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.qdsschool.2021.005.
Texto completoLoi, Maria Antonietta. "QD solar cells: past, present and future". En Online school on Fundamentals of Semiconductive Quantum Dots. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.qdsschool.2021.011.
Texto completoElsinger, Lukas, Dries Van Thourhout, Iman E. Zadeh, Jorick Maes, Antonio Guardiani, Ronan Gourgues, Silvania F. Pereira et al. "Plasmonic Enhancement and Spectroscopy of PbS/CdS QD Emitters on a Silicon Nitride Photonic Platform". En Internet Conference for Quantum Dots. València: Fundació Scito, 2020. http://dx.doi.org/10.29363/nanoge.icqd.2020.103.
Texto completoOnal, Asim, Guncem Ozgun Eren, Sadra Sadeghi, Rustamzhon Melikov, Mertcan Han, Onuralp Karatum, Melek Sermin Ozer et al. "Highly Efficient White LEDs by Using Near Unity Emitting Colloidal Quantum Dots in Liquid Medium". En Novel Optical Materials and Applications. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/noma.2022.now4d.1.
Texto completoDongre, Suryansh, Debi Prasad Panda, Sanowar Alam Gazi, Debabrata Das, Ravinder Kumar, Abhishek Kumar, Nivedita Pandey y Subhananda Chakrabarti. "Optimization of strain-coupled InAs QD layers in P-i-P infrared photodetector heterostructures". En Quantum Dots, Nanostructures, and Quantum Materials: Growth, Characterization, and Modeling XVII, editado por Diana L. Huffaker y Holger Eisele. SPIE, 2020. http://dx.doi.org/10.1117/12.2542565.
Texto completoOzkan, Cengiz S. "Assembly at the Nanoscale: Heterojunctions of Carbon Nanotubes and Nanocrystals (Keynote)". En ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82363.
Texto completoOzkan, Cengiz S. "Assembly at the Nanoscale: Towards Functional Nanostructured Materials (Invited)". En ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17078.
Texto completoInformes sobre el tema "Quantum Dots (QD)"
Lagally, Max. Quantum Dots on Silicon-on-Insulator (QD/SOI): Nanoscale Strain and Band Structure Engineering. Office of Scientific and Technical Information (OSTI), septiembre de 2023. http://dx.doi.org/10.2172/2004654.
Texto completoReinhart, Chase. Formulation of Colloidal Suspensions of 3-mercaptopropionic acid capped PbS Quantum Dots as Solution Processable QD "Inks" for Optoelectronic Applications. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.3280.
Texto completo