Artículos de revistas sobre el tema "Quantitative analysis of interactomes"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Quantitative analysis of interactomes".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Kohli, Priyanka, Malte P. Bartram, Sandra Habbig, Caroline Pahmeyer, Tobias Lamkemeyer, Thomas Benzing, Bernhard Schermer y Markus M. Rinschen. "Label-free quantitative proteomic analysis of the YAP/TAZ interactome". American Journal of Physiology-Cell Physiology 306, n.º 9 (1 de mayo de 2014): C805—C818. http://dx.doi.org/10.1152/ajpcell.00339.2013.
Texto completoHannigan, Molly M., Alyson M. Hoffman, J. Will Thompson, Tianli Zheng y Christopher V. Nicchitta. "Quantitative Proteomics Links the LRRC59 Interactome to mRNA Translation on the ER Membrane". Molecular & Cellular Proteomics 19, n.º 11 (11 de agosto de 2020): 1826–49. http://dx.doi.org/10.1074/mcp.ra120.002228.
Texto completoChou, Chung-Lin, Gloria Hwang, Daniel J. Hageman, Lichy Han, Prashasti Agrawal, Trairak Pisitkun y Mark A. Knepper. "Identification of UT-A1- and AQP2-interacting proteins in rat inner medullary collecting duct". American Journal of Physiology-Cell Physiology 314, n.º 1 (1 de enero de 2018): C99—C117. http://dx.doi.org/10.1152/ajpcell.00082.2017.
Texto completoHiebel, Christof, Elisabeth Stürner, Meike Hoffmeister, Georg Tascher, Mario Schwarz, Heike Nagel, Christian Behrends, Christian Münch y Christian Behl. "BAG3 Proteomic Signature under Proteostasis Stress". Cells 9, n.º 11 (4 de noviembre de 2020): 2416. http://dx.doi.org/10.3390/cells9112416.
Texto completoSadeesh, Nithin, Mauro Scaravilli y Leena Latonen. "Proteomic Landscape of Prostate Cancer: The View Provided by Quantitative Proteomics, Integrative Analyses, and Protein Interactomes". Cancers 13, n.º 19 (27 de septiembre de 2021): 4829. http://dx.doi.org/10.3390/cancers13194829.
Texto completoScifo, Enzo, Agnieszka Szwajda, Rabah Soliymani, Francesco Pezzini, Marzia Bianchi, Arvydas Dapkunas, Janusz Dębski et al. "Quantitative analysis of PPT1 interactome in human neuroblastoma cells". Data in Brief 4 (septiembre de 2015): 207–16. http://dx.doi.org/10.1016/j.dib.2015.05.016.
Texto completoBuneeva, Olga, Arthur Kopylov, Oksana Gnedenko, Marina Medvedeva, Alexander Veselovsky, Alexis Ivanov, Victor Zgoda y Alexei Medvedev. "Proteomic Profiling of Mouse Brain Pyruvate Kinase Binding Proteins: A Hint for Moonlighting Functions of PKM1?" International Journal of Molecular Sciences 24, n.º 8 (21 de abril de 2023): 7634. http://dx.doi.org/10.3390/ijms24087634.
Texto completoVelásquez-Zapata, Valeria, J. Mitch Elmore, Sagnik Banerjee, Karin S. Dorman y Roger P. Wise. "Next-generation yeast-two-hybrid analysis with Y2H-SCORES identifies novel interactors of the MLA immune receptor". PLOS Computational Biology 17, n.º 4 (2 de abril de 2021): e1008890. http://dx.doi.org/10.1371/journal.pcbi.1008890.
Texto completoSerrao, Simone, Cristina Contini, Giulia Guadalupi, Alessandra Olianas, Greca Lai, Irene Messana, Massimo Castagnola et al. "Salivary Cystatin D Interactome in Patients with Systemic Mastocytosis: An Exploratory Study". International Journal of Molecular Sciences 24, n.º 19 (27 de septiembre de 2023): 14613. http://dx.doi.org/10.3390/ijms241914613.
Texto completoNarushima, Yuta, Hiroko Kozuka-Hata, Kouhei Tsumoto, Jun-Ichiro Inoue y Masaaki Oyama. "Quantitative phosphoproteomics-based molecular network description for high-resolution kinase-substrate interactome analysis". Bioinformatics 32, n.º 14 (24 de marzo de 2016): 2083–88. http://dx.doi.org/10.1093/bioinformatics/btw164.
Texto completoOuyang, Haiping, Xinyu (Cindy) How, Xiaorong (Sherry) Wang, Yao Gong, Lan Huang, Yue Chen y David Bernlohr. "Abstract 1295 Application of Crosslinking-based technology in Quantitative Analysis of PHD2 Interactome". Journal of Biological Chemistry 300, n.º 3 (marzo de 2024): 106858. http://dx.doi.org/10.1016/j.jbc.2024.106858.
Texto completoCutler, Jevon, Rahia Tahir, Jingnan Han, Raja Sekhar Nirujogi, Tai-Chung Huang, Xianrong Wong, Saradhi Mallampati et al. "Differential Signaling through p190 and p210 Forms of BCR-ABL Fusion Proteins Revealed By Proteomic Analysis". Blood 126, n.º 23 (3 de diciembre de 2015): 3651. http://dx.doi.org/10.1182/blood.v126.23.3651.3651.
Texto completoJung, WooRam, Emma Sierecki, Michele Bastiani, Ailis O’Carroll, Kirill Alexandrov, James Rae, Wayne Johnston et al. "Cell-free formation and interactome analysis of caveolae". Journal of Cell Biology 217, n.º 6 (1 de mayo de 2018): 2141–65. http://dx.doi.org/10.1083/jcb.201707004.
Texto completoBaucum, Anthony J., Brian C. Shonesy, Kristie L. Rose y Roger J. Colbran. "Quantitative Proteomics Analysis of CaMKII Phosphorylation and the CaMKII Interactome in the Mouse Forebrain". ACS Chemical Neuroscience 6, n.º 4 (24 de febrero de 2015): 615–31. http://dx.doi.org/10.1021/cn500337u.
Texto completoDreijerink, Koen Marie Anton, Ezgi Ozyerli-Goknar, Stefanie Koidl, Ewoud Van der Lelij, Priscilla Van den Heuvel, Jeffrey Kooijman, Martin Biniossek, Kees Rodenburg, Sheikh Nizamuddin y Marc Timmers. "LBODP106 Multi-omics Analyses Of MEN1 Missense Mutations Identify Disruption Of Menin-MLL And Menin-JunD Interactions As Critical Requirements For Molecular Pathogenicity". Journal of the Endocrine Society 6, Supplement_1 (1 de noviembre de 2022): A865. http://dx.doi.org/10.1210/jendso/bvac150.1788.
Texto completoGiss, Dominic, Simon Kemmerling, Venkata Dandey, Henning Stahlberg y Thomas Braun. "Exploring the Interactome: Microfluidic Isolation of Proteins and Interacting Partners for Quantitative Analysis by Electron Microscopy". Analytical Chemistry 86, n.º 10 (28 de abril de 2014): 4680–87. http://dx.doi.org/10.1021/ac4027803.
Texto completoBu, Hengtao, Qiang Song, Jiexiu Zhang, Yuang Wei y Bianjiang Liu. "Development of a Novel KCNN4-Related ceRNA Network and Prognostic Model for Renal Clear Cell Carcinoma". Analytical Cellular Pathology 2023 (24 de enero de 2023): 1–26. http://dx.doi.org/10.1155/2023/2533992.
Texto completoJiang, Zheng, Lei Shen, Jie He, Lihui Du, Xin Xia, Longhao Zhang y Xu Yang. "Functional Analysis of SmMYB39 in Salt Stress Tolerance of Eggplant (Solanum melongena L.)". Horticulturae 9, n.º 8 (25 de julio de 2023): 848. http://dx.doi.org/10.3390/horticulturae9080848.
Texto completoSkarra, Dana V., Marilyn Goudreault, Hyungwon Choi, Michael Mullin, Alexey I. Nesvizhskii, Anne-Claude Gingras y Richard E. Honkanen. "Label-free quantitative proteomics and SAINT analysis enable interactome mapping for the human Ser/Thr protein phosphatase 5". PROTEOMICS 11, n.º 8 (25 de febrero de 2011): 1508–16. http://dx.doi.org/10.1002/pmic.201000770.
Texto completoMartino, Camillo, Alessio Di Luca, Francesca Bennato, Andrea Ianni, Fabrizio Passamonti, Elisa Rampacci, Michael Henry, Paula Meleady y Giuseppe Martino. "Label-Free Quantitative Analysis of Pig Liver Proteome after Hepatitis E Virus Infection". Viruses 16, n.º 3 (6 de marzo de 2024): 408. http://dx.doi.org/10.3390/v16030408.
Texto completoYang, Xin, Liqun Lu, Chan Wu y Feng Zhang. "ATP2B1-AS1 exacerbates sepsis-induced cell apoptosis and inflammation by regulating miR-23a-3p/TLR4 axis". Allergologia et Immunopathologia 51, n.º 2 (1 de marzo de 2023): 17–26. http://dx.doi.org/10.15586/aei.v51i2.782.
Texto completoLobert, Sharon, Mary E. Graichen, Robert D. Hamilton, Karen T. Pitman, Michael R. Garrett, Chindo Hicks y Tejaswi Koganti. "Prognostic biomarkers for HNSCC using quantitative real-time PCR and microarray analysis: β-tubulin isotypes and the p53 interactome". Cytoskeleton 71, n.º 11 (noviembre de 2014): 628–37. http://dx.doi.org/10.1002/cm.21195.
Texto completoNamboodiri, Saritha y Alessandro Giuliani. "Looking Into the Binary Interactome of Enterobacteriaceae Family of Bacteria". International Journal of Applied Research in Bioinformatics 9, n.º 1 (enero de 2019): 50–65. http://dx.doi.org/10.4018/ijarb.2019010104.
Texto completoYi, Zhou, Marion Manil-Ségalen, Laila Sago, Annie Glatigny, Virginie Redeker, Renaud Legouis y Marie-Hélène Mucchielli-Giorgi. "SAFER, an Analysis Method of Quantitative Proteomic Data, Reveals New Interactors of the C. elegans Autophagic Protein LGG-1". Journal of Proteome Research 15, n.º 5 (6 de abril de 2016): 1515–23. http://dx.doi.org/10.1021/acs.jproteome.5b01158.
Texto completoUrooj, Tabinda, Bushra Wasim, Shamim Mushtaq, Ghulam Haider, Syed N. N. Shah, Rubina Ghani y Muhammad F. H. Qureshi. "Increased NID1 Expression among Breast Cancer Lung Metastatic Women; A Comparative Analysis between Naive and Treated Cases". Recent Patents on Anti-Cancer Drug Discovery 15, n.º 1 (14 de mayo de 2020): 59–69. http://dx.doi.org/10.2174/1574892815666200302115438.
Texto completoKaluzhskiy, L. A., P. V. Ershov, K. S. Kurpedinov, D. S. Sonina, E. O. Yablokov, T. V. Shkel, I. V. Haidukevich, G. V. Sergeev, S. A. Usanov y A. S. Ivanov. "SPR analysis of protein-protein interactions with P450 cytochromes and cytochrome b5 integrated into lipid membrane". Biomeditsinskaya Khimiya 65, n.º 5 (2019): 374–79. http://dx.doi.org/10.18097/pbmc20196505374.
Texto completoRajagopal, Varshni, Astrid-Solveig Loubal, Niklas Engel, Elsa Wassmer, Jeanette Seiler, Oliver Schilling, Maiwen Caudron-Herger y Sven Diederichs. "Proteome-Wide Identification of RNA-Dependent Proteins in Lung Cancer Cells". Cancers 14, n.º 24 (12 de diciembre de 2022): 6109. http://dx.doi.org/10.3390/cancers14246109.
Texto completoZhang, Weiwen, Feng Li y Lei Nie. "Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies". Microbiology 156, n.º 2 (1 de febrero de 2010): 287–301. http://dx.doi.org/10.1099/mic.0.034793-0.
Texto completoJames, Rachel, James L. Searcy, Thierry Le Bihan, Sarah F. Martin, Catherine M. Gliddon, Joanne Povey, Ruth F. Deighton, Lorraine E. Kerr, James McCulloch y Karen Horsburgh. "Proteomic Analysis of Mitochondria in APOE Transgenic Mice and in Response to an Ischemic Challenge". Journal of Cerebral Blood Flow & Metabolism 32, n.º 1 (31 de agosto de 2011): 164–76. http://dx.doi.org/10.1038/jcbfm.2011.120.
Texto completoGole, Boris y Uroš Potočnik. "Pre-Treatment Biomarkers of Anti-Tumour Necrosis Factor Therapy Response in Crohn’s Disease—A Systematic Review and Gene Ontology Analysis". Cells 8, n.º 6 (28 de mayo de 2019): 515. http://dx.doi.org/10.3390/cells8060515.
Texto completoKalkhof, Stefan, Stefan Schildbach, Conny Blumert, Friedemann Horn, Martin von Bergen y Dirk Labudde. "PIPINO: A Software Package to Facilitate the Identification of Protein-Protein Interactions from Affinity Purification Mass Spectrometry Data". BioMed Research International 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/2891918.
Texto completoCorbo, Vincenzo, Irene Dalai, Maria Scardoni, Stefano Barbi, Stefania Beghelli, Samantha Bersani, Luca Albarello et al. "MEN1 in pancreatic endocrine tumors: analysis of gene and protein status in 169 sporadic neoplasms reveals alterations in the vast majority of cases". Endocrine-Related Cancer 17, n.º 3 (septiembre de 2010): 771–83. http://dx.doi.org/10.1677/erc-10-0028.
Texto completoWilhelmus, Micha M. M., Elisa Tonoli, Clare Coveney, David J. Boocock, Cornelis A. M. Jongenelen, John J. P. Brevé, Elisabetta A. M. Verderio y Benjamin Drukarch. "The Transglutaminase-2 Interactome in the APP23 Mouse Model of Alzheimer’s Disease". Cells 11, n.º 3 (24 de enero de 2022): 389. http://dx.doi.org/10.3390/cells11030389.
Texto completoBasha, Omer, Chanan M. Argov, Raviv Artzy, Yazeed Zoabi, Idan Hekselman, Liad Alfandari, Vered Chalifa-Caspi y Esti Yeger-Lotem. "Differential network analysis of multiple human tissue interactomes highlights tissue-selective processes and genetic disorder genes". Bioinformatics 36, n.º 9 (21 de enero de 2020): 2821–28. http://dx.doi.org/10.1093/bioinformatics/btaa034.
Texto completoEmdal, Kristina B., Anna-Kathrine Pedersen, Dorte B. Bekker-Jensen, Alicia Lundby, Shana Claeys, Katleen De Preter, Frank Speleman, Chiara Francavilla y Jesper V. Olsen. "Integrated proximal proteomics reveals IRS2 as a determinant of cell survival in ALK-driven neuroblastoma". Science Signaling 11, n.º 557 (20 de noviembre de 2018): eaap9752. http://dx.doi.org/10.1126/scisignal.aap9752.
Texto completoAstarita, Jillian L., Shilpa Keerthivasan, Bushra Husain, Yasin Şenbabaoğlu, Erik Verschueren, Sarah Gierke, Victoria C. Pham et al. "The neutrophil protein CD177 is a novel PDPN receptor that regulates human cancer-associated fibroblast physiology". PLOS ONE 16, n.º 12 (8 de diciembre de 2021): e0260800. http://dx.doi.org/10.1371/journal.pone.0260800.
Texto completoStojanović, Stevan D., Maximilian Fuchs, Jan Fiedler, Ke Xiao, Anna Meinecke, Annette Just, Andreas Pich, Thomas Thum y Meik Kunz. "Comprehensive Bioinformatics Identifies Key microRNA Players in ATG7-Deficient Lung Fibroblasts". International Journal of Molecular Sciences 21, n.º 11 (9 de junio de 2020): 4126. http://dx.doi.org/10.3390/ijms21114126.
Texto completoContini, Cristina, Simone Serrao, Barbara Manconi, Alessandra Olianas, Federica Iavarone, Giulia Guadalupi, Irene Messana et al. "Characterization of Cystatin B Interactome in Saliva from Healthy Elderly and Alzheimer’s Disease Patients". Life 13, n.º 3 (10 de marzo de 2023): 748. http://dx.doi.org/10.3390/life13030748.
Texto completoRamirez, Oscar, Anil Kesarwani, Gupta Abhishek, Alex C. Minella y Manoj M. Pillai. "Integrative Analysis of RNA-Interactome and Translatome Reveal Functional Targets of MSI2 in Myeloid Leukemia". Blood 128, n.º 22 (2 de diciembre de 2016): 1881. http://dx.doi.org/10.1182/blood.v128.22.1881.1881.
Texto completoCain, Margo P., Belinda J. Hernandez y Jichao Chen. "Quantitative single-cell interactomes in normal and virus-infected mouse lungs". Disease Models & Mechanisms 13, n.º 6 (27 de mayo de 2020): dmm044404. http://dx.doi.org/10.1242/dmm.044404.
Texto completoN. M., Prashant, Hongyu Liu, Pavlos Bousounis, Liam Spurr, Nawaf Alomran, Helen Ibeawuchi, Justin Sein, Dacian Reece-Stremtan y Anelia Horvath. "Estimating the Allele-Specific Expression of SNVs From 10× Genomics Single-Cell RNA-Sequencing Data". Genes 11, n.º 3 (25 de febrero de 2020): 240. http://dx.doi.org/10.3390/genes11030240.
Texto completoPersico, Maria. "Systematic Analysis of Interactomes in Sequence Properties Space". Current Bioinformatics 8, n.º 3 (1 de mayo de 2013): 315–27. http://dx.doi.org/10.2174/1574893611308030007.
Texto completoDrummond, Eleanor, Geoffrey Pires, Claire MacMurray, Manor Askenazi, Shruti Nayak, Marie Bourdon, Jiri Safar, Beatrix Ueberheide y Thomas Wisniewski. "Phosphorylated tau interactome in the human Alzheimer’s disease brain". Brain 143, n.º 9 (19 de agosto de 2020): 2803–17. http://dx.doi.org/10.1093/brain/awaa223.
Texto completoKumar, Raman, Karthik S. Kamath, Luke Carroll, Peter Hoffmann, Jozef Gecz y Lachlan A. Jolly. "Endogenous protein interactomes resolved through immunoprecipitation-coupled quantitative proteomics in cell lines". STAR Protocols 3, n.º 4 (diciembre de 2022): 101693. http://dx.doi.org/10.1016/j.xpro.2022.101693.
Texto completoPoorgholi Belverdi, Mohammad, Carola Krause, Asja Guzman y Petra Knaus. "Comprehensive analysis of TGF-β and BMP receptor interactomes". European Journal of Cell Biology 91, n.º 4 (abril de 2012): 287–93. http://dx.doi.org/10.1016/j.ejcb.2011.05.004.
Texto completoKruse, Kevin, Jeff Klomp, Mitchell Sun, Zhang Chen, Dianicha Santana, Fei Huang, Pinal Kanabar, Mark Maienschein-Cline y Yulia A. Komarova. "Analysis of biological networks in the endothelium with biomimetic microsystem platform". American Journal of Physiology-Lung Cellular and Molecular Physiology 317, n.º 3 (1 de septiembre de 2019): L392—L401. http://dx.doi.org/10.1152/ajplung.00392.2018.
Texto completoWang, Li-Jie, Chia-Wei Hsu, Chiu-Chin Chen, Ying Liang, Lih-Chyang Chen, David M. Ojcius, Ngan-Ming Tsang, Chuen Hsueh, Chih-Ching Wu y Yu-Sun Chang. "Interactome-wide Analysis Identifies End-binding Protein 1 as a Crucial Component for the Speck-like Particle Formation of Activated Absence in Melanoma 2 (AIM2) Inflammasomes". Molecular & Cellular Proteomics 11, n.º 11 (6 de agosto de 2012): 1230–44. http://dx.doi.org/10.1074/mcp.m112.020594.
Texto completoZheng, Lu-Lu, Chunyan Li, Jie Ping, Yanhong Zhou, Yixue Li y Pei Hao. "The Domain Landscape of Virus-Host Interactomes". BioMed Research International 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/867235.
Texto completoAndrew, Robert J., Kate Fisher, Kate J. Heesom, Katherine A. B. Kellett y Nigel M. Hooper. "Quantitative interaction proteomics reveals differences in the interactomes of amyloid precursor protein isoforms". Journal of Neurochemistry 149, n.º 3 (14 de febrero de 2019): 399–412. http://dx.doi.org/10.1111/jnc.14666.
Texto completoTruman, Andrew W., Kolbrun Kristjansdottir, Donald Wolfgeher, Natalia Ricco, Anoop Mayampurath, Samuel L. Volchenboum, Josep Clotet y Stephen J. Kron. "The quantitative changes in the yeast Hsp70 and Hsp90 interactomes upon DNA damage". Data in Brief 2 (marzo de 2015): 12–15. http://dx.doi.org/10.1016/j.dib.2014.10.006.
Texto completo