Literatura académica sobre el tema "Quantification of sources"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Quantification of sources".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Quantification of sources"
Ferguson, Christobel M., Katrina Charles y Daniel A. Deere. "Quantification of Microbial Sources in Drinking-Water Catchments". Critical Reviews in Environmental Science and Technology 39, n.º 1 (31 de diciembre de 2008): 1–40. http://dx.doi.org/10.1080/10643380701413294.
Texto completoAngerer, Jürgen. "Sources and quantification of human backgroudexposure to acrylamide". Toxicology Letters 180 (octubre de 2008): S24—S25. http://dx.doi.org/10.1016/j.toxlet.2008.06.707.
Texto completoCzerewko, M. A., J. C. Cripps, J. M. Reid y C. G. Duffell. "Sulfur species in geological materials––sources and quantification". Cement and Concrete Composites 25, n.º 7 (octubre de 2003): 657–71. http://dx.doi.org/10.1016/s0958-9465(02)00066-5.
Texto completoClark, Ephraim y Radu Tunaru. "Quantification of political risk with multiple dependent sources". Journal of Economics and Finance 27, n.º 2 (junio de 2003): 125–35. http://dx.doi.org/10.1007/bf02827214.
Texto completoYang, Jian-Ping, Hong-Zhong Huang, Yu Liu y Yan-Feng Li. "Quantification Classification Algorithm of Multiple Sources of Evidence". International Journal of Information Technology & Decision Making 14, n.º 05 (septiembre de 2015): 1017–34. http://dx.doi.org/10.1142/s0219622014500242.
Texto completoBrereton, Carol A., Lucy J. Campbell y Matthew R. Johnson. "Computationally efficient quantification of unknown fugitive emissions sources". Atmospheric Environment: X 3 (julio de 2019): 100035. http://dx.doi.org/10.1016/j.aeaoa.2019.100035.
Texto completoBielek, Boris y Milan Bielek. "Common Characteristics of Zero Energy Buildings in Relation to the Energy Distribution Networks". Advanced Materials Research 855 (diciembre de 2013): 31–34. http://dx.doi.org/10.4028/www.scientific.net/amr.855.31.
Texto completoNafziger, Steven. "Quantification and the Economic History of Imperial Russia". Slavic Review 76, n.º 1 (2017): 30–36. http://dx.doi.org/10.1017/slr.2017.5.
Texto completoMéndez, M., M. Perdomo, D. Pose, C. Lindner, J. Torres y A. Laborde. "Montevideo's health care centers, mercury sources identification and quantification". Toxicology Letters 259 (octubre de 2016): S123. http://dx.doi.org/10.1016/j.toxlet.2016.07.316.
Texto completoMcAuley, Grant, Matthew Schrag, Pál Sipos, Shu-Wei Sun, Andre Obenaus, Jaladhar Neelavalli, E. Mark Haacke, Barbara Holshouser, Ramóna Madácsi y Wolff Kirsch. "Quantification of punctate iron sources using magnetic resonance phase". Magnetic Resonance in Medicine 63, n.º 1 (1 de diciembre de 2009): 106–15. http://dx.doi.org/10.1002/mrm.22185.
Texto completoTesis sobre el tema "Quantification of sources"
Person, Christophe. "Quantification des anomalies neurologiques métaboliques et imagerie de sources électriques". Phd thesis, Université de Lorraine, 2012. http://tel.archives-ouvertes.fr/tel-00738247.
Texto completoGrythe, Henrik. "Quantification of sources and removal mechanisms of atmospheric aerosol particles". Doctoral thesis, Stockholms universitet, Institutionen för miljövetenskap och analytisk kemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-138903.
Texto completoAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.
Sylvestre, Alexandre. "Caractérisation de l'aérosol industriel et quantification de sa contribution aux PM2.5 atmosphériques". Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4714/document.
Texto completoIn order to limit the impact of air quality on human health, public authorities need reliable and accurate information on the sources contribution. So, the identification of the main sources of PM2.5 is the first step to adopt efficient mitigation policies. This work carry out in this thesis take place in this issue and was to determine the main sources of PM2.5 inside an industrial area. To determinate the main sources of PM2.5, two campaigns were lead to collect daily PM2.5 to: 1/ determine the enrichment of atmospheric pollutants downwind from the main industrial activities and 2/ collect PM2.5 in urban areas characteristic of the population exposition. Results allowed to obtain very representative profiles for the main industrial activities implanted inside the studied area. ME-2 analysis, combined to radiocarbon measurements, allowed to highlight the very high impact of Biomass Burning sources for all the PM2.5 pollution events recorded from early autumn to March. This study showed that industrial sources, even if they are the major sources during spring and summer, are not the major PM2.5 driver. However, this study highlights that industrial sources impact significantly the aerosol population (size, composition, etc.) in the studied area
Tcheheumeni, Djanni Axel Laurel. "Identification and quantification of noise sources in marine towed active electromagnetic data". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28914.
Texto completoHultin, Eriksson Elin. "Quantification of Terrestrial CO2 Sources to a Headwater Streamin a Boreal Forest Catchment". Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-305435.
Texto completoEn signifikant mängd koldioxid (CO2) är lagrad i skog och marken. Marken i barrskogsregionernaförvarar en signifikant mängd CO2 där det partiella trycket av CO2 varierar mellan ~10 000 – 50 000 ppm i jämförelse med atmosfären (400 ppm). Mättnaden av CO2 gör att mycket avdunstar tillbaka till atmosfären. Dock absorberas en del CO2 av grundvattnet; vilket resulterar i en naturlig transport av CO2 vidare till ytvattnen där det kapillära nätverket av bäckar är största recipienten. Det är fortfarande oklart hur transporten av CO2 är distribuerad i ett vattenavrinningsområde vilket medför brister i förståelsen av en viktig processväg som kan komma att spela en större roll i framtidens kolkretslopp på grund av den globala uppvärmningen. Därför är en kvantifiering av olika områdens bidrag av CO2 till bäckarna nödvändig. Två betydande zoner i ett vattenavrinningsområde som troligen bidrar olika är: the riparian zone som är närmast bäcken och består av fina sediment med hög organisk halt och, the hillslope som är resterande område och består av grovkorniga jordar med låg organisk halt. Den förstnämnda misstänks transportera mer CO2 via grundvattnet på grund av dess närhet till bäcken, höga halter av CO2 och höga vattenmättnad men detta är ännu inte verifierat. Jag evaluerar the riparian zone som en viktig källa till CO2 i ett vattenavrinningsområde genom att kvantifiera transporten av CO2 från de två zonerna. För att förklara varför transporten varierar presenterar jag en ny modell (GVR) som beräknar den månatliga fluktuationen av den del av CO2-produktionen som absorberas i grundvattnet i the riparian zone. Mätningar av data utfördes i Västrabäcken, ett mindre vattenavrinningsområde i ett större vid namn Krycklan, i norra Sverige. En transekt av tre mätstationer (i bäcken, the riparian zone och the hillslope) installerades i den förmodade grundvattenströmningsriktningen. Resultaten visar på en hög produktion av CO2 under vårfloden (maj) då en hög grundvattenyta troligen absorberar en signifikant mängd CO2. Detta kan betyda att jordrespiration under våren underskattas då dagens mätmetoder är begränsade till mätningar i jorden av CO2 ovan grundvattenytan. Fortsatta studier rekommenderas där GVR-modellen och andra mätmetoder utförs samtidigt för att vidare utröna den kvantitativa underskattningen under perioder med hög grundvattenyta (speciellt under våren). Bidraget från the riparian zone till den totala laterala transporten av CO2 till bäcken under ett år varierar mellan 58-89 % och det månatliga transportmönstret kunde förklaras med resultaten från GVR-modellen. Resultaten verifierar att oberoende av säsong så är the riparian zone den huvudsakliga laterala koltransporten från landvegetationen; medan the hillslope procentuellt bidrar med mer CO2 under höga grundvattenflöden.
Conrad, Yvonne [Verfasser]. "Model-based quantification of nitrate-nitrogen leaching considering sources of uncertainty / Yvonne Conrad". Kiel : Universitätsbibliothek Kiel, 2017. http://d-nb.info/1128149249/34.
Texto completoSturm, M. "Identification and quantification of transient structure-borne sound sources in electrical steering systems". Thesis, University of Salford, 2014. http://usir.salford.ac.uk/30761/.
Texto completoMoore, Treyton Michael. "Molecular Methods for the Identification and Quantification of Cyanobacteria in Surface Water Sources". BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7408.
Texto completoBerchet, Antoine. "Quantification des sources de méthane en Sibérie par inversion atmosphérque à la méso-échelle". Thesis, Versailles-St Quentin en Yvelines, 2014. http://www.theses.fr/2014VERS0058/document.
Texto completoAnthopogenic and natural methane emissions in Siberia significantly contribute to theglobal methane budget, but the magnitude of these emissions is uncertain (3–11% of globalemissions). To the South, anthropogenic emissions are related to big urban centres. To theNorth, oil and gas extraction in West Siberia is responsible for conspicuous point sources.These regions are also covered by large natural wetlands emitting methane during the snowfreeseason, roughly from May to September. Regional atmospheric inversions at a meso-scaleprovide a mean for improving our knowledge on all emission process. But inversions sufferfrom the uncertainties in the assimilated observations, in the atmospheric transport modeland in the emission magnitude and distribution. I developp a new inversion method based onerror statistic marginalization in order to account for these uncertainties. I test this methodon case study and explore its robustness. I then apply it to Siberia. Using measurements ofmethane atmospheric concentrations gathered at Siberian surface observation sites, I founda regional methane budget in Siberia of 5–28 TgCH4.a−1 (1–5% of global emissions). Thisimplies a reduction of 50% in the uncertainties on the regional budget. With the new method,I also can detect emission patterns at a resolution of a few thousands km2 and emissionvariability at a resolution of 2–4 weeks
Berchet, Antoine. "Quantification des sources de méthane en Sibérie par inversion atmosphérque à la méso-échelle". Electronic Thesis or Diss., Versailles-St Quentin en Yvelines, 2014. http://www.theses.fr/2014VERS0058.
Texto completoAnthopogenic and natural methane emissions in Siberia significantly contribute to theglobal methane budget, but the magnitude of these emissions is uncertain (3–11% of globalemissions). To the South, anthropogenic emissions are related to big urban centres. To theNorth, oil and gas extraction in West Siberia is responsible for conspicuous point sources.These regions are also covered by large natural wetlands emitting methane during the snowfreeseason, roughly from May to September. Regional atmospheric inversions at a meso-scaleprovide a mean for improving our knowledge on all emission process. But inversions sufferfrom the uncertainties in the assimilated observations, in the atmospheric transport modeland in the emission magnitude and distribution. I developp a new inversion method based onerror statistic marginalization in order to account for these uncertainties. I test this methodon case study and explore its robustness. I then apply it to Siberia. Using measurements ofmethane atmospheric concentrations gathered at Siberian surface observation sites, I founda regional methane budget in Siberia of 5–28 TgCH4.a−1 (1–5% of global emissions). Thisimplies a reduction of 50% in the uncertainties on the regional budget. With the new method,I also can detect emission patterns at a resolution of a few thousands km2 and emissionvariability at a resolution of 2–4 weeks
Libros sobre el tema "Quantification of sources"
Environment, Alberta Alberta. Specified gas emitters regulation: Additional guidance for interpretation of the quantification protocol for tillage system management for carbon offsets in Alberta. [Edmonton]: Alberta Environment, 2008.
Buscar texto completoD, Denham y Symposium on Quantification of Earthquakes and the Determination of Source Parameters (1987 : Vancouver), eds. Quantification of earthquakes and the determination of source parameters. Amsterdam: Elsevier, 1989.
Buscar texto completoLillyman, Carrie Danielle. The quantification of mobile source contributions to fine particulate matter in the Greater Toronto Area. Ottawa: National Library of Canada, 2001.
Buscar texto completoCurrens, James C. Characterization and quantification of nonpoint source pollution in a conduit-flow dominated karst aquifer underlying an extensive use agricultural region--phase III: Final report. [Lexington, Ky.]: Kentucky Geological Survey, University of Kentucky, 1999.
Buscar texto completoSampson, R. Neil y Joe Wisniewski. Terrestrial Biospheric Carbon Fluxes Quantification of Sinks and Sources of CO2. Springer, 2012.
Buscar texto completoSampson, R. Neil y Joe Wisniewski. Terrestrial Biospheric Carbon Fluxes Quantification of Sinks and Sources of CO2. Springer London, Limited, 2012.
Buscar texto completo(Editor), Joe Wisniewski y R. Neil Sampson (Editor), eds. Terrestrial Biospheric Carbon Fluxes:: Quantification of Sinks and Sources of CO2. Springer, 1993.
Buscar texto completoWuertz, Stefan, Dustin Bambic, Graham McBride y Woutrina Miller. Quantification of Pathogens and Sources of Microbial Indicators for QMRA in Recreational Waters. IWA Publishing, 2011.
Buscar texto completoJoe, Wisniewski y Sampson R. Neil, eds. Terrestrial biospheric carbon fluxes: Quantification of sinks and sources of CO₂ : [workshop] Bad Harzburg, Germany, 1-5 March 1993. Dordrecht: Kluwer Academic, 1993.
Buscar texto completoBevington, Christopher F. P. Identification and Quantification of Atmospheric Emission Sources of Heavy Metals and Dust from Metallurgical Processes and Waste Incineration (Envi). European Communities, 1987.
Buscar texto completoCapítulos de libros sobre el tema "Quantification of sources"
Haspelmath, Martin. "Diachronic Sources of ‘All’ and ‘Every’". En Quantification in Natural Languages, 363–82. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0321-3_12.
Texto completoHaspelmath, Martin. "Diachronic Sources of ‘All’ and ‘Every’". En Quantification in Natural Languages, 363–82. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-2817-1_12.
Texto completoParhizkar, Tarannom, Ingrid B. Utne y Jan-Erik Vinnem. "Data Sources and Development for Online Risk Quantification". En Springer Series in Reliability Engineering, 41–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88098-9_3.
Texto completoHu, Yu. "Pore Water Geochemistry and Quantification of Methane Cycling". En South China Sea Seeps, 129–48. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1494-4_8.
Texto completoKronvang, B., R. Grant y A. L. Laubel. "Sediment and Phosphorus Export from a Lowland Catchment: Quantification of Sources". En The Interactions Between Sediments and Water, 465–76. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5552-6_48.
Texto completoImfeld, G., G. Skrzypek, J. Adu-Gyamfi y L. Heng. "Conclusion: Stable Isotope Tracers Are Useful for the Identification of Pollutants in Agro-ecosystems". En Tracing the Sources and Fate of Contaminants in Agroecosystems, 157–64. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47265-7_8.
Texto completoSkrzypek, G. "Stable Sulfur and Oxygen Isotope Compositions of Sulfates to Disentangle Agrocontaminants from Other Sources of Sulfur in Agrosystems". En Tracing the Sources and Fate of Contaminants in Agroecosystems, 99–125. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47265-7_6.
Texto completoSampson, R. Neil, Michael Apps, Sandra Brown, C. Vernon Cole, John Downing, Linda S. Heath, Dennis S. Ojima, Thomas M. Smith, Allen M. Solomon y Joe Wisniewski. "Workshop Summary Statement: Terrestrial Bioshperic Carbon Fluxes Quantification of Sinks and Sources of CO2". En Terrestrial Biospheric Carbon Fluxes:, 3–15. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1982-5_1.
Texto completoVega-Coloma, Mabel y Claudio Zaror. "The Life Cycle Sustainability Indicators for Electricity Generation in Chile: Challenges in the Use of Primary Information". En Towards a Sustainable Future - Life Cycle Management, 229–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77127-0_21.
Texto completoDiestmann, Thomas, Nils Broedling, Benedict Götz y Tobias Melz. "Surrogate Model-Based Uncertainty Quantification for a Helical Gear Pair". En Lecture Notes in Mechanical Engineering, 191–207. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77256-7_16.
Texto completoActas de conferencias sobre el tema "Quantification of sources"
Swamy, Maharudrayya, Pejman Shoeibi Omrani y Nestor Gonzalez Diez. "Uncertainty Quantification of Aeroacoustic Power Sources in Corrugated Pipes". En ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45507.
Texto completoComsa, Daria C., Thomas J. Farrell y Michael S. Patterson. "Quantification of Point-Like Fluorescent Sources in Small Animals". En Biomedical Optics. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/biomed.2008.bwe5.
Texto completoFantz, U., Ch Wimmer, Yasuhiko Takeiri y Katsuyoshi Tsumori. "Quantification Of Cesium In Negative Hydrogen Ion Sources By Laser Absorption Spectroscopy". En SECOND INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES. AIP, 2011. http://dx.doi.org/10.1063/1.3637405.
Texto completoKönecke, Tom y Michael Hanss. "ON PROCESSING HETEROGENEOUS SOURCES OF LIMITED DATA FOR UNCERTAINTY QUANTIFICATION IN A POSSIBILISTIC FRAMEWORK". En 5th International Conference on Uncertainty Quantification in Computational Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research National Technical University of Athens, 2023. http://dx.doi.org/10.7712/120223.10343.19772.
Texto completoAbdul Talip, Noor Arnida, Mohd Hafiz Muhamad Pikri, Dr Shahrul Azman Zainal Abidin y Hasnor Hassaruddin Hashim. "Deployment of Methane Detection and Quantification Technologies". En SPE Europec featured at 82nd EAGE Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/205166-ms.
Texto completoAlleaume, C., E. Yesilada, V. Farys y Y. Trouiller. "Quantification of the difference between two sources by Zernike polynomial decomposition". En SPIE Advanced Lithography. SPIE, 2011. http://dx.doi.org/10.1117/12.881779.
Texto completoJain, Apurti, Narayana Prasad Padhy y Mukesh Kumar Pathak. "Quantification of inertia contribution from non-conventional sources in AC microgrid". En 2022 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE). IEEE, 2022. http://dx.doi.org/10.1109/pesgre52268.2022.9715956.
Texto completoWang, Yeqing, Getachew K. Befekadu y Crystal L. Pasiliao. "Uncertainty Quantification for Laser Ablation of Aluminum". En ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70625.
Texto completoLevesque, M., M. Belec, C. Hudon y C. Guddemi. "The need for PD quantification based on the type of discharge sources". En 2017 IEEE Electrical Insulation Conference (EIC). IEEE, 2017. http://dx.doi.org/10.1109/eic.2017.8004694.
Texto completoTu, Haohua, Yuan Liu, Utkarsh Sharma y Stephen A. Boppart. "Rigorous Quantification of Polarized Fiber Continuum Generation for Broadband Coherent Optical Sources". En CLEO: Applications and Technology. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/cleo_at.2011.jthb78.
Texto completoInformes sobre el tema "Quantification of sources"
Harbaugh, Glenn R., Daniel A. Steinhurst, Mark J. Howard, Bruce J. Barrow, Jonathan T. Miller y Thomas H. Bell. Quantification of Noise Sources in EMI Surveys. Fort Belvoir, VA: Defense Technical Information Center, abril de 2012. http://dx.doi.org/10.21236/ada559831.
Texto completoSinclair, Samantha y Sandra LeGrand. Reproducibility assessment and uncertainty quantification in subjective dust source mapping. Engineer Research and Development Center (U.S.), agosto de 2021. http://dx.doi.org/10.21079/11681/41523.
Texto completoSinclair, Samantha y Sandra LeGrand. Reproducibility assessment and uncertainty quantification in subjective dust source mapping. Engineer Research and Development Center (U.S.), agosto de 2021. http://dx.doi.org/10.21079/11681/41542.
Texto completoJakeman, John, Michael Eldred, Gianluca Geraci, Thomas Smith y Alex Gorodetsky. LDRD #218317: Learning Hidden Structure in Multi-Fidelity Information Sources for Efficient Uncertainty Quantification. Office of Scientific and Technical Information (OSTI), septiembre de 2020. http://dx.doi.org/10.2172/1668458.
Texto completoChristensen, Lance. PR-459-133750-R03 Fast Accurate Automated System To Find And Quantify Natural Gas Leaks. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), noviembre de 2019. http://dx.doi.org/10.55274/r0011633.
Texto completoNeudecker, D., V. Pronyaev y G. Schnabel. Summary Report of the IAEA Consultants’ Meeting on Neutron Data Standards. IAEA Nuclear Data Section, noviembre de 2022. http://dx.doi.org/10.61092/iaea.spcr-1nha.
Texto completoLiu, Zhen, Cosmin Safta, Khachik Sargsyan, Habib N. Najm, Bart Gustaaf van Bloemen Waanders, Brian W. LaFranchi, Mark D. Ivey, Paul E. Schrader, Hope A. Michelsen y Ray P. Bambha. Greenhouse Gas Source Attribution: Measurements Modeling and Uncertainty Quantification. Office of Scientific and Technical Information (OSTI), septiembre de 2014. http://dx.doi.org/10.2172/1322290.
Texto completoFourrier, Marine. Integration of in situ and satellite multi-platform data (estimation of carbon flux for trop. Atlantic). EuroSea, 2023. http://dx.doi.org/10.3289/eurosea_d7.6.
Texto completoTobias, Benjamin John, Sasikumar Palaniyappan, Donald Cort Gautier, Jacob Mendez, Trevor John Burris-Mog, Chengkun K. Huang, Andrea Favalli et al. Quantification of uncertainty in photon source spot size inference during laser-driven radiography experiments at TRIDENT. Office of Scientific and Technical Information (OSTI), octubre de 2017. http://dx.doi.org/10.2172/1402669.
Texto completoGel, Aytekin, Yang Jiao, Heather Emady y Charles Tong. MFIX-DEM Phi: Performance and Capability Improvements Towards Industrial Grade Open-source DEM Framework with Integrated Uncertainty Quantification. Office of Scientific and Technical Information (OSTI), mayo de 2018. http://dx.doi.org/10.2172/1439328.
Texto completo