Siga este enlace para ver otros tipos de publicaciones sobre el tema: QED de cavité.

Artículos de revistas sobre el tema "QED de cavité"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "QED de cavité".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Lechner, Daniel, Riccardo Pennetta, Martin Blaha, Philipp Schneeweiss, Jürgen Volz y Arno Rauschenbeutel. "Experimental investigation of light-matter interaction when transitioning from cavity QED to waveguide QED". EPJ Web of Conferences 266 (2022): 11006. http://dx.doi.org/10.1051/epjconf/202226611006.

Texto completo
Resumen
Cavity quantum electrodynamics (cavity QED) is conventionally described by the Jaynes- or Tavis-Cummings model, where quantum emitters couple to a single-mode cavity. The opposite scenario, in which an ensemble of emitters couples to a single spatial mode of a propagating light field, is described by waveguide QED, where emitters interact with a continuum of frequency modes. Here we present an experiment where an ensemble of cold atoms strongly couples to a fiber-ring resonator with variable length containing an optical nanofiber. By changing the length of the resonator we can tailor the density of frequency modes and thus explore the transition from cavity QED to waveguide QED. We analyse the response of the ensemble–cavity system after the sudden switch-on of resonant laser light and find that for progressively longer resonators, the Rabi oscillations typical of cavity QED disappear and the single-pass dynamics of waveguide QED appear. Our measurements shed light on the interplay between the single-pass collective response of the atoms to the propagating cavity field and the ensemble–cavity dynamics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Zhang Lei, 张蕾. "基于腔QED制备三粒子singlet态". Laser & Optoelectronics Progress 58, n.º 23 (2021): 2327002. http://dx.doi.org/10.3788/lop202158.2327002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

YE, LIU y GUANG-CAN GUO. "ENTANGLEMENT CONCENTRATION AND A QUANTUM REPEATER IN CAVITY QED". International Journal of Quantum Information 03, n.º 02 (junio de 2005): 351–57. http://dx.doi.org/10.1142/s0219749905001018.

Texto completo
Resumen
A scheme of quantum concentration for unknown atomic entangled states via cavity QED is proposed. During the preparation and the joint measurement of quantum states, the cavity is only virtually excited; thus, the scheme is insensitive to the cavity field states and the cavity decay. In the meanwhile, our setup also provides a demonstration of a quantum repeater in cavity QED in principle.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

YANG, ZHEN, WEN-HAI ZHANG y LIU YE. "SCHEME TO IMPLEMENT THE OPTIMAL ASYMMETRIC ECONOMICAL 1 → 2 PHASE-COVARIANT TELECLONING VIA CAVITY-QED". International Journal of Quantum Information 06, n.º 02 (abril de 2008): 317–23. http://dx.doi.org/10.1142/s0219749908003426.

Texto completo
Resumen
We propose an experimentally feasible scheme to implement the optimal asymmetric economical 1 → 2 phase-covariant telecloning, which works without ancilla, based on Cavity-QED. Our scheme is insensitive to the cavity field states and cavity decay. During the telecloning process, the cavity is only virtually excited, thus it greatly prolongs the efficient decoherent time. Therefore, the scheme can be experimentally realized in the range of current cavity QED techniques.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Wang, Yahong y Changshui Yu. "Minimum remote state preparation of an arbitrary two-level one-atom state via cavity QED". International Journal of Quantum Information 13, n.º 02 (marzo de 2015): 1550009. http://dx.doi.org/10.1142/s0219749915500094.

Texto completo
Resumen
In this paper, we propose three schemes for remotely state preparation (RSP) an arbitrary two-level one-atom state via cavity quantum electro dynamics (QED) with minimal resources consumption. In the first case, a Greenberger–Horne–Zeilinger (GHZ) state is used as quantum channel; in the second case, the sender needs to construct an quantum channel with both of the assistant of cavity QED and the knowledge about the state to be remotely prepared. In each scheme, only 1 cbit and 1 ebit are needed with the aid of cavity QED. In the third case, we combine the first two protocols and give a theoretical proposal for controlled RSP with only 2 cbits and 1 ebit resources consumption.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

XUE, ZHENG-YAUN, PING DONG, YOU-MIN YI y ZHUO-LIANG CAO. "QUANTUM STATE SHARING VIA THE GHZ STATE IN CAVITY QED WITHOUT JOINT MEASUREMENT". International Journal of Quantum Information 04, n.º 05 (octubre de 2006): 749–59. http://dx.doi.org/10.1142/s0219749906002201.

Texto completo
Resumen
We investigate schemes to securely distribute and reconstruct single-qubit and two-qubit arbitrary quantum states between two parties via tripartite GHZ states in cavity QED without joint measurement. Our schemes offer a simple way of demonstrating quantum state sharing in cavity QED. We also consider the generalization of our schemes to distribute and reconstruct a quantum state among many parties.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

LIU, CHUAN-LONG, YAN-WEI WANG y YI-ZHUANG ZHENG. "IMPLEMENTATION OF NON-LOCAL TOFFOLI GATE VIA CAVITY QUANTUM ELECTRODYNAMICS". International Journal of Quantum Information 07, n.º 03 (abril de 2009): 669–80. http://dx.doi.org/10.1142/s0219749909003329.

Texto completo
Resumen
A scheme for realizing the non-local Toffoli gate among three spatially separated nodes through cavity quantum electrodynamics (C-QED) is presented. The scheme can obtain high fidelity in the current C-QED system. With entangled qubits as quantum channels, the operation is resistive to actual environment noise.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Said, Taoufik, Abdelhaq Chouikh, Karima Essammouni y Mohamed Bennai. "Realizing an N-two-qubit quantum logic gate in a cavity QED with nearest qubit--qubit interaction". Quantum Information and Computation 16, n.º 5&6 (abril de 2016): 465–82. http://dx.doi.org/10.26421/qic16.5-6-4.

Texto completo
Resumen
We propose an effective way for realizing a three quantum logic gates (NTCP gate, NTCP-NOT gate and NTQ-NOT gate) of one qubit simultaneously controlling N target qubits based on the qubit-qubit interaction. We use the superconducting qubits in a cavity QED driven by a strong microwave field. In our scheme, the operation time of these gates is independent of the number N of qubits involved in the gate operation. These gates are insensitive to the initial state of the cavity QED and can be used to produce an analogous CNOT gate simultaneously acting on N qubits. The quantum phase gate can be realized in a time (nanosecond-scale) much smaller than decoherence time and dephasing time (microsecond-scale) in cavity QED. Numerical simulation under the influence of the gate operations shows that the scheme could be achieved efficiently within current state-of-the-art technology.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Chang, D. E., L. Jiang, A. V. Gorshkov y H. J. Kimble. "Cavity QED with atomic mirrors". New Journal of Physics 14, n.º 6 (1 de junio de 2012): 063003. http://dx.doi.org/10.1088/1367-2630/14/6/063003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Imamoglu, Atac. "Cavity-QED Using Quantum Dots". Optics and Photonics News 13, n.º 8 (1 de agosto de 2002): 22. http://dx.doi.org/10.1364/opn.13.8.000022.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Le Thomas, N., U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes y U. Banin. "Cavity QED with Semiconductor Nanocrystals". Nano Letters 6, n.º 3 (marzo de 2006): 557–61. http://dx.doi.org/10.1021/nl060003v.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Haroche, S. "Mesoscopic coherences in cavity QED". Il Nuovo Cimento B 110, n.º 5-6 (mayo de 1995): 545–56. http://dx.doi.org/10.1007/bf02741464.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

González, Joanna y Miguel Orszag. "Quantum Cloning and Cavity QED". Open Systems & Information Dynamics 11, n.º 04 (diciembre de 2004): 377–83. http://dx.doi.org/10.1007/s11080-004-6628-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Gerry, Christopher C. "Cavity QED analog of spin". Journal of Modern Optics 44, n.º 11-12 (noviembre de 1997): 2159–71. http://dx.doi.org/10.1080/09500349708231876.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Prants, S. V. y M. Yu Uleysky. "Quantum instability in cavity QED". Journal of Experimental and Theoretical Physics Letters 82, n.º 12 (diciembre de 2005): 748–52. http://dx.doi.org/10.1134/1.2175242.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Lange, Wolfgang y Jean-Michel Gerard. "Focus section on Cavity QED". Journal of Optics B: Quantum and Semiclassical Optics 6, n.º 2 (1 de febrero de 2004): 117–18. http://dx.doi.org/10.1088/1464-4266/6/2/e03.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Haroche, S. "Entanglement experiments in cavity QED". Fortschritte der Physik 51, n.º 45 (7 de mayo de 2003): 388–95. http://dx.doi.org/10.1002/prop.200310052.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

ZHANG, WEN–HAI, LIU YE y JIE-LIN DAI. "SCHEME TO IMPLEMENT GENERAL PHASE-COVARIANT QUANTUM CLONING". International Journal of Quantum Information 04, n.º 05 (octubre de 2006): 761–68. http://dx.doi.org/10.1142/s0219749906002262.

Texto completo
Resumen
We propose an experimentally feasible scheme to implement the optimal general 1→2 phase-covariant quantum cloning machine based on cavity QED. In the scheme, the cavity is only virtually excited and thus the scheme is insensitive to the cavity field states and cavity decay.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Li, Ming, Wei Chen y Junli Gao. "A Coherence Preservation Control Strategy in Cavity QED Based on Classical Quantum Feedback". Scientific World Journal 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/340917.

Texto completo
Resumen
For eliminating the unexpected decoherence effect in cavity quantum electrodynamics (cavity QED), the transfer function of Rabi oscillation is derived theoretically using optical Bloch equations. In particular, the decoherence in cavity QED from the atomic spontaneous emission is especially considered. A feedback control strategy is proposed to preserve the coherence through Rabi oscillation stabilization. In the scheme, a classical quantum feedback channel for the quantum information acquisition is constructed via the quantum tomography technology, and a compensation system based on the root locus theory is put forward to suppress the atomic spontaneous emission and the associated decoherence. The simulation results have proved its effectiveness and superiority for the coherence preservation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

NOH, CHANGSUK y DIMITRIS G. ANGELAKIS. "SIMULATING TOPOLOGICAL EFFECTS WITH PHOTONS IN COUPLED QED CAVITY ARRAYS". International Journal of Modern Physics B 28, n.º 02 (15 de diciembre de 2013): 1441003. http://dx.doi.org/10.1142/s0217979214410033.

Texto completo
Resumen
We provide a pedagogical account of an early proposal realizing fractional quantum Hall effect (FQHE) using coupled quantum electrodynamics (QED) cavity arrays (CQCAs). We start with a brief introduction on the basics of quantum Hall effects and then review the early proposals in the simulation of spin-models and fractional quantum Hall (FQH) physics with photons in coupled atom-cavity arrays. We calculate the energy gap and the overlap between the ground state of the system and the corresponding Laughlin wavefunction to analyze the FQH physics arising in the system and discuss possibilities to reach the ground state using adiabatic methods used in Cavity QED.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Wineland, David, J. Ignacio Cirac y Richard Jozsa. "Editorial Note". Quantum Information and Computation 1, n.º 2 (agosto de 2001): 1–2. http://dx.doi.org/10.26421/qic1.2-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

XIONG, WEI, TAO WU y LIU YE. "REALIZATION OF NONLOCAL QUANTUM GATE THROUGH ASSISTED-CAVITIES". International Journal of Quantum Information 10, n.º 02 (marzo de 2012): 1250011. http://dx.doi.org/10.1142/s0219749912500116.

Texto completo
Resumen
We propose a scheme for implementing a three-qubit controlled-Not-Not (CNNOT) gate and a two-qubit SWAP gate between atoms and single-photon pulse through cavity QED. In the scheme, we can one-step realize multiple-qubit GHZ state and two-qubit Bell state by applying multiple-qubits CNNOT gate. We have also shown that our scheme would be robust against practical imperfections in current cavity QED experiment setup through simple numerical estimates. Finally, we provide the current parameters to show that our scheme is feasible.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Tarallo, Marco G. "Toward a quantum-enhanced strontium optical lattice clock at INRIM". EPJ Web of Conferences 230 (2020): 00011. http://dx.doi.org/10.1051/epjconf/202023000011.

Texto completo
Resumen
The new strontium atomic clock at INRIM seeks to establish a new frontier in quantum measurement by joining state-of-the-art optical lattice clocks and the quantized electromagnetic field provided by a cavity QED setup. The goal of our experiment is to apply advanced quantum techniques to state-of-the-art optical lattice clocks, demonstrating enhanced sensitivity while preserving long coherence times and the highest accuracy. In this paper we describe the current status of the experiment and the prospected sensitivity gain for the designed cavity QED setup.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

YANG, MING, YOU-MING YI y ZHUO-LIANG CAO. "SCHEME FOR PREPARATION OF W STATE VIA CAVITY QED". International Journal of Quantum Information 02, n.º 02 (junio de 2004): 231–35. http://dx.doi.org/10.1142/s021974990400016x.

Texto completo
Resumen
In this paper, we presented a physical scheme to generate the multi-cavity maximally entangled W state via cavity QED. All the operations needed in this scheme are to modulate the interaction time only once.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Yuge, Tatsuro, Kenji Kamide, Makoto Yamaguchi y Tetsuo Ogawa. "Cavity-Loss Induced Plateau in Coupled Cavity QED Array". Journal of the Physical Society of Japan 83, n.º 12 (15 de diciembre de 2014): 123001. http://dx.doi.org/10.7566/jpsj.83.123001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Ye, Liu y Guang-Can Guo. "Transferring a cavity field entangled state in cavity QED". Journal of Optics B: Quantum and Semiclassical Optics 7, n.º 8 (11 de julio de 2005): 212–14. http://dx.doi.org/10.1088/1464-4266/7/8/002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Mabuchi, H., M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, A. Scherer y S. J. van Enk. "Quantum networks based on cavity QED". Quantum Information and Computation 1, Special (diciembre de 2001): 7–12. http://dx.doi.org/10.26421/qic1.s-3.

Texto completo
Resumen
We review an ongoing program of interdisciplinary research aimed at developing hardware and protocols for quantum communication networks. Our primary experimental goals are to demonstrate quantum state mapping from storage/processing media (internal states of trapped atoms) to transmission media (optical photons), and to investigate a nanotechnology paradigm for cavity QED that would involve the integration of magnetic microtraps with photonic bandgap structures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Bastarrachea-Magnani, Miguel Angel, Baldemar López-del-Carpio, Jorge Chávez-Carlos, Sergio Lerma-Hernández y Jorge G. Hirsch. "Regularity and chaos in cavity QED". Physica Scripta 92, n.º 5 (19 de abril de 2017): 054003. http://dx.doi.org/10.1088/1402-4896/aa6640.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Rice, P. R., J. Gea-Banacloche, M. L. Terraciano, D. L. Freimund y L. A. Orozco. "Steady State Entanglement in Cavity QED". Optics Express 14, n.º 10 (2006): 4514. http://dx.doi.org/10.1364/oe.14.004514.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Larson, J. "Wave packet methods in cavity QED". Journal of Physics: Conference Series 99 (1 de febrero de 2008): 012011. http://dx.doi.org/10.1088/1742-6596/99/1/012011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Bužek, V., G. Drobný, M. S. Kim, G. Adam y P. L. Knight. "Cavity QED with cold trapped ions". Physical Review A 56, n.º 3 (1 de septiembre de 1997): 2352–60. http://dx.doi.org/10.1103/physreva.56.2352.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Spehner, D. y M. Orszag. "Quantum jump dynamics in cavity QED". Journal of Mathematical Physics 43, n.º 7 (julio de 2002): 3511–37. http://dx.doi.org/10.1063/1.1476392.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Hughes, Stephen, Marten Richter y Andreas Knorr. "Quantized pseudomodes for plasmonic cavity QED". Optics Letters 43, n.º 8 (11 de abril de 2018): 1834. http://dx.doi.org/10.1364/ol.43.001834.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Orszag, Miguel, Nellu Ciobanu, Raul Coto y Vitalie Eremeev. "Quantum correlations in cavity QED networks". Journal of Modern Optics 62, n.º 8 (18 de julio de 2014): 593–607. http://dx.doi.org/10.1080/09500340.2014.940020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Ye, Tian-Yu. "Quantum Private Comparison via Cavity QED". Communications in Theoretical Physics 67, n.º 2 (febrero de 2017): 147. http://dx.doi.org/10.1088/0253-6102/67/2/147.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Semião, F. L. "Single-mode two-channel cavity QED". Journal of Physics B: Atomic, Molecular and Optical Physics 41, n.º 8 (3 de abril de 2008): 081004. http://dx.doi.org/10.1088/0953-4075/41/8/081004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Aqil, Muhammad, Aarouj, Fauzia Bano y Farhan Saif. "Engineering noon states in cavity QED". Journal of Russian Laser Research 31, n.º 4 (julio de 2010): 343–49. http://dx.doi.org/10.1007/s10946-010-9154-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

van Enk, S. J., H. J. Kimble y H. Mabuchi. "Quantum Information Processing in Cavity-QED". Quantum Information Processing 3, n.º 1-5 (octubre de 2004): 75–90. http://dx.doi.org/10.1007/s11128-004-3104-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Bruneau, L. y C. A. Pillet. "Thermal Relaxation of a QED Cavity". Journal of Statistical Physics 134, n.º 5-6 (9 de diciembre de 2008): 1071–95. http://dx.doi.org/10.1007/s10955-008-9656-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Esfandiarpour, Saeideh, Hassan Safari y Stefan Yoshi Buhmann. "Cavity-QED interactions of several atoms". Journal of Physics B: Atomic, Molecular and Optical Physics 52, n.º 8 (4 de abril de 2019): 085503. http://dx.doi.org/10.1088/1361-6455/aaf6d7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Eleuch, H., J. M. Courty, G. Messin, C. Fabre y E. Giacobino. "Cavity QED effects in semiconductor microcavities". Journal of Optics B: Quantum and Semiclassical Optics 1, n.º 1 (1 de enero de 1999): 1–7. http://dx.doi.org/10.1088/1464-4266/1/1/001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Doherty, A. C., A. S. Parkins, S. M. Tan y D. F. Walls. "Effects of motion in cavity QED". Journal of Optics B: Quantum and Semiclassical Optics 1, n.º 4 (1 de agosto de 1999): 475–82. http://dx.doi.org/10.1088/1464-4266/1/4/320.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Spehner, D. y M. Orszag. "Temperature-enhanced squeezing in cavity QED". Journal of Optics B: Quantum and Semiclassical Optics 4, n.º 5 (30 de agosto de 2002): 326–35. http://dx.doi.org/10.1088/1464-4266/4/5/315.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Mielke, S. L., G. T. Foster y L. A. Orozco. "Nonclassical Intensity Correlations in Cavity QED". Physical Review Letters 80, n.º 18 (4 de mayo de 1998): 3948–51. http://dx.doi.org/10.1103/physrevlett.80.3948.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Jabri, H. y H. Eleuch. "Bunching and Antibunching in Cavity QED". Communications in Theoretical Physics 56, n.º 1 (julio de 2011): 134–38. http://dx.doi.org/10.1088/0253-6102/56/1/23.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Rfifi, Saad y Fatimazahra Siyouri. "Effect of Cavity QED on Entanglement". Foundations of Physics 46, n.º 11 (23 de junio de 2016): 1461–70. http://dx.doi.org/10.1007/s10701-016-0024-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Ye, Tian-Yu. "Secure Quantum Dialogue via Cavity QED". International Journal of Theoretical Physics 54, n.º 3 (25 de julio de 2014): 772–79. http://dx.doi.org/10.1007/s10773-014-2268-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Vogel, W. y C. Di Fidio. "Cavity QED with a trapped ion". Fortschritte der Physik 51, n.º 23 (3 de marzo de 2003): 242–48. http://dx.doi.org/10.1002/prop.200310034.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Nayak, N., Biplab Ghosh y A. S. Majumdar. "Environment induced entanglement in cavity-QED". Indian Journal of Physics 84, n.º 8 (agosto de 2010): 1039–50. http://dx.doi.org/10.1007/s12648-010-0098-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Yin-Ju, Lu. "Quantum Secret Sharing via Cavity QED". International Journal of Theoretical Physics 59, n.º 10 (15 de septiembre de 2020): 3324–28. http://dx.doi.org/10.1007/s10773-020-04591-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía