Artículos de revistas sobre el tema "Pyrroline-5-carboxylate"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Pyrroline-5-carboxylate.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Pyrroline-5-carboxylate".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Merrill, M. J., G. C. Yeh y J. M. Phang. "Purified Human Erythrocyte Pyrroline-5-carboxylate Reductase". Journal of Biological Chemistry 264, n.º 16 (junio de 1989): 9352–58. http://dx.doi.org/10.1016/s0021-9258(18)60538-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Zhao, Man, Linlin Qian, Zhuoyu Chi, Xiaoli Jia, Fengjie Qi, Fengjie Yuan, Zhiqiang Liu y Yuguo Zheng. "Combined Metabolomic and Quantitative RT-PCR Analyses Revealed the Synthetic Differences of 2-Acetyl-1-pyrroline in Aromatic and Non-Aromatic Vegetable Soybeans". International Journal of Molecular Sciences 23, n.º 23 (22 de noviembre de 2022): 14529. http://dx.doi.org/10.3390/ijms232314529.

Texto completo
Resumen
Aroma is an important economic trait of vegetable soybeans, which greatly influences their market value. The 2-acetyl-1-pyrroline (2AP) is considered as an important substance affecting the aroma of plants. Although the 2AP synthesis pathway has been resolved, the differences of the 2AP synthesis in the aromatic and non-aromatic vegetable soybeans are unknown. In this study, a broad targeted metabolome analysis including measurement of metabolites levels and gene expression levels was performed to reveal pathways of aroma formation in the two developmental stages of vegetable soybean grains [35 (S5) and 40 (S6) days after anthesis] of the ‘Zhexian No. 8’ (ZX8, non-aromatic) and ZK1754 (aromatic). The results showed that the differentially accumulated metabolites (DAMs) of the two varieties can be classified into nine main categories including flavonoids, lipids, amino acids and derivatives, saccharides and alcohols, organic acids, nucleotides and derivatives, phenolic acids, alkaloids and vitamin, which mainly contributed to their phenotypic differences. Furthermore, in combination with the 2AP synthesis pathway, the differences of amino acids and derivatives were mainly involved in the 2AP synthesis. Furthermore, 2AP precursors’ analysis revealed that the accumulation of 2AP mainly occurred from 1-pyrroline-5-carboxylate (P5C), not 4-aminobutyraldehyde (GABald). The quantitative RT-PCR showed that the associated synthetic genes were 1-pyrroline-5-carboxylate dehydrogenase (P5CDH), ∆1-pyrroline-5-carboxylate synthetase (P5CS), proline dehydrogenase (PRODH) and pyrroline-5-carboxylate reductase (P5CR), which further verified the synthetic pathway of 2AP. Furthermore, the betaine aldehyde dehydrogenase 2 (GmBADH2) mutant was not only vital for the occurrence of 2AP, but also for the synthesis of 4-aminobutyric acid (GABA) in vegetable soybean. Therefore, the differences of 2AP accumulation in aromatic and non-aromatic vegetable soybeans have been revealed, and it also provides an important theoretical basis for aromatic vegetable soybean breeding.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Meng, Zhaohui, Zhiyong Lou, Zhe Liu, Ming Li, Xiaodong Zhao, Mark Bartlam y Zihe Rao. "Crystal Structure of Human Pyrroline-5-carboxylate Reductase". Journal of Molecular Biology 359, n.º 5 (junio de 2006): 1364–77. http://dx.doi.org/10.1016/j.jmb.2006.04.053.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Vettore, Lisa, Rebecca Westbrook, Jennie Roberts, Cristina Escribano-Gonzalez, Federica Cuozzo, David Hodson, Colin Watts, Colin Nixon y Daniel Tennant. "FSMP-12. A ROLE FOR PROLINE BIOSYNTHESIS IN HYPOXIC GLIOBLASTOMA". Neuro-Oncology Advances 3, Supplement_1 (1 de marzo de 2021): i18. http://dx.doi.org/10.1093/noajnl/vdab024.076.

Texto completo
Resumen
Abstract Hypoxia is a common feature of glioblastoma, and a known driver of therapy resistance in brain tumours. Understanding the metabolic adaptations to hypoxia is key to develop new effective treatments for patients. A recent screening study highlighted Pyrroline-5-carboxylate reductase-like (PYCRL) as one of the top three genes that allowed tumour survival in hypoxia. PYCRL is one of the three enzymes involved in proline biosynthesis along with the mitochondrial pyrroline-5-carboxylate reductase 1 and 2 (PYCR1/2). The latter use glutamine as the carbon source to fuel the pyrroline-5-carboxylate (P5C)-to-proline reaction, whereas the cytosolic PYCRL is known to use ornithine to produce proline. Our investigations have shown that PYCRL differs from PYCR1 and 2 in the impact on cellular redox, which is a critical factor in hypoxic survival. Our data suggest that PYCRL activity is required for normal regulation of glioblastoma cell growth and the ability to deal with cellular stress, and that this enzyme may therefore represent a novel target in the treatment of these devastating tumours. Importantly, our study also begins to provide much-needed clarity over the network surrounding proline metabolism and redox maintenance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Wu, G., D. A. Knabe y N. E. Flynn. "Synthesis of citrulline from glutamine in pig enterocytes". Biochemical Journal 299, n.º 1 (1 de abril de 1994): 115–21. http://dx.doi.org/10.1042/bj2990115.

Texto completo
Resumen
The synthesis of citrulline from glutamine was quantified in enterocytes from pre-weaning (14-21 days old) and post-weaning (29-58 days old) pigs. The cells were incubated at 37 degrees C for 30 min in Krebs-Henseleit bicarbonate buffer (pH 7.4) containing 0, 0.5, 2 and 5 mM glutamine. Oxygen consumption was linear during the 30 min incubation period. The rates of citrulline synthesis were low or negligible in enterocytes from 14-21-day-old pigs, but increased 10-20-fold in the cells from 29-58-day-old pigs. This marked elevation of citrulline synthesis coincided with an increase in the activity of pyrroline-5-carboxylate synthase with the animal's post-weaning growth. In contrast, decreases in the activities of phosphate-dependent glutaminase, ornithine aminotransferase, ornithine carbamoyltransferase and carbamoyl-phosphate synthase were observed as the age of the pigs increased. The concentrations of carbamoyl phosphate in enterocytes from pre-weaning pigs were higher than, or similar to, those in the cells from post-weaning pigs. It is possible that the low rate of citrulline synthesis from glutamine in enterocytes from pre-weaning pigs was due to a limited availability of ornithine, rather than that of carbamoyl phosphate. We suggest that this limited availability of ornithine in pre-weaning-pig enterocytes results from (i) the low rate of pyrroline-5-carboxylate synthesis from glutamate, due to the low activity of pyrroline-5-carboxylate synthase, and (ii) the competitive conversion of pyrroline-5-carboxylate into proline. Our present findings on the developmental aspect of citrulline synthesis in pig enterocytes may offer a biochemical mechanism for the previous observations that arginine is a nutritionally essential amino acid for suckling piglets, but not for adult pigs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Hu, C. A. A., S. Khalil, S. Zhaorigetu, Z. Liu, M. Tyler, G. Wan y D. Valle. "Human Δ1-pyrroline-5-carboxylate synthase: function and regulation". Amino Acids 35, n.º 4 (10 de abril de 2008): 665–72. http://dx.doi.org/10.1007/s00726-008-0075-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Hu, Chien-an A., Wei-Wen Lin, Cassandra Obie y David Valle. "Molecular Enzymology of Mammalian Δ1-Pyrroline-5-carboxylate Synthase". Journal of Biological Chemistry 274, n.º 10 (5 de marzo de 1999): 6754–62. http://dx.doi.org/10.1074/jbc.274.10.6754.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Small, Curtis y Mary Ellen Jones. "A specific radiochemical assay for pyrroline-5-carboxylate dehydrogenase". Analytical Biochemistry 161, n.º 2 (marzo de 1987): 380–86. http://dx.doi.org/10.1016/0003-2697(87)90466-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Basch, J. J., E. D. Wickham y H. M. Farrell. "Pyrroline-5-Carboxylate Reductase in Lactating Bovine Mammary Glands". Journal of Dairy Science 79, n.º 8 (agosto de 1996): 1361–68. http://dx.doi.org/10.3168/jds.s0022-0302(96)76493-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Farrés, J., P. Julià y X. Parés. "Aldehyde oxidation in human placenta. Purification and properties of 1-pyrroline-5-carboxylate dehydrogenase". Biochemical Journal 256, n.º 2 (1 de diciembre de 1988): 461–67. http://dx.doi.org/10.1042/bj2560461.

Texto completo
Resumen
The human placenta contains a considerable amount of 1-pyrroline-5-carboxylate dehydrogenase (23 +/- 6 micrograms/g; n = 12), about 25% of the concentration present in liver. The enzyme is the only form in placenta that oxidizes short- and medium-chain aldehydes, which facilitates its purification from this organ. It can be purified to homogeneity by successive chromatographies on DEAE-cellulose, 5′-AMP-Sepharose and Sephacryl S-300. From 500 g of tissue, about 2.1 units of enzyme can be obtained with a 12% yield. Placental 1-pyrroline-5-carboxylate dehydrogenase is a dimer of Mr-63,000 subunits. It exhibits a pI of 6.80-6.65, and is specific for 1-pyrroline-5-carboxylate, the cyclic form of glutamate gamma-semialdehyde (Km = 0.17 mM, kcat. = 870 min-1), although it also oxidizes short-chain aliphatic aldehydes such as propionaldehyde (Km = 24 mM, kcat. = 500 min-1). These properties are very close to those of the liver enzyme, indicating a strong similarity between the enzyme forms from both organs. The enzyme is highly sensitive to temperature, showing 50% inhibition after incubation for 0.8 min at 45 degrees C or after 23 min at 25 degrees C. It is irreversibly inhibited by disulfiram, and a molar ratio inhibitor: enzyme of 60:1 produced 50% inhibition after incubation for 10 min. A subcellular-distribution study indicates that the enzyme is located in two compartments: the mitochondria, with 60% of the total activity, and the cytosol, with 40% activity. The physiological role of the enzyme in placental amino acid metabolism is discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Krueger, Rolf, Hans-Jürgen Jäger, Martin Hintz y Edwin Pahlich. "Purification to Homogeneity of Pyrroline-5-Carboxylate Reductase of Barley". Plant Physiology 80, n.º 1 (1 de enero de 1986): 142–44. http://dx.doi.org/10.1104/pp.80.1.142.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Meng, Zhaohui, Zhiyong Lou, Zhe Liu, Dong Hui, Mark Bartlam y Zihe Rao. "Purification, characterization, and crystallization of human pyrroline-5-carboxylate reductase". Protein Expression and Purification 49, n.º 1 (septiembre de 2006): 83–87. http://dx.doi.org/10.1016/j.pep.2006.02.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Inagaki, Eiji, Noriyasu Ohshima, Hitomi Takahashi, Chizu Kuroishi, Shigeyuki Yokoyama y TahirH Tahirov. "Crystal Structure of Thermus thermophilus Δ1-Pyrroline-5-carboxylate Dehydrogenase". Journal of Molecular Biology 362, n.º 3 (septiembre de 2006): 490–501. http://dx.doi.org/10.1016/j.jmb.2006.07.048.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Shiono, Takashi, Peter F. Kador y Jin J. Kinoshita. "Purification and characterization of rat lens pyrroline-5-carboxylate reductase". Biochimica et Biophysica Acta (BBA) - General Subjects 881, n.º 1 (marzo de 1986): 72–78. http://dx.doi.org/10.1016/0304-4165(86)90098-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Fahmy, Afaf S., Saleh A. Mohamed, Rasmy B. Girgis y Fathy A. Abdel-Ghaffar. "Enzymes of Δ1-Pyrroline-5-Carboxylate Metabolism in the Camel Tick Hyalomma dromedarii During Embryogenesis. Purification and Characterization of Δ1-Pyrroline-5-Carboxylate Dehydrogenases". Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 118, n.º 1 (septiembre de 1997): 229–37. http://dx.doi.org/10.1016/s0305-0491(97)00053-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Luo, Qiaoyu, Yonggui Ma, Huichun Xie, Feifei Chang, Chiming Guan, Bing Yang y Yushou Ma. "Proline Metabolism in Response to Climate Extremes in Hairgrass". Plants 13, n.º 10 (18 de mayo de 2024): 1408. http://dx.doi.org/10.3390/plants13101408.

Texto completo
Resumen
Hairgrass (Deschampsia caespitosa), a widely distributed grass species considered promising in the ecological restoration of degraded grassland in the Qinghai-Xizang Plateau, is likely to be subjected to frequent drought and waterlogging stress due to ongoing climate change, further aggravating the degradation of grassland in this region. However, whether it would acclimate to water stresses resulting from extreme climates remains unknown. Proline accumulation is a crucial metabolic response of plants to challenging environmental conditions. This study aims to investigate the changes in proline accumulation and key enzymes in hairgrass shoot and root tissues in response to distinct climate extremes including moderate drought, moderate waterlogging, and dry–wet variations over 28 days using a completely randomized block design. The proline accumulation, contribution of the glutamate and ornithine pathways, and key enzyme activities related to proline metabolism in shoot and root tissues were examined. The results showed that water stress led to proline accumulation in both shoot and root tissues of hairgrass, highlighting the importance of this osmoprotectant in mitigating the effects of environmental challenges. The differential accumulation of proline in shoots compared to roots suggests a strategic allocation of resources by the plant to cope with osmotic stress. Enzymatic activities related to proline metabolism, such as Δ1-pyrroline-5-carboxylate synthetase, ornithine aminotransferase, Δ1-pyrroline-5-carboxylate reductase, Δ1-pyrroline-5-carboxylate dehydrogenase, and proline dehydrogenase, further emphasize the dynamic regulation of proline levels in hairgrass under water stress conditions. These findings support the potential for enhancing the stress resistance of hairgrass through the genetic manipulation of proline biosynthesis and catabolism pathways.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Deutch, Charles E., Jessica L. Klarstrom, Casey L. Link y Dominic L. Ricciardi. "Oxidation of l-Thiazolidine-4-Carboxylate by Δ1-Pyrroline-5-Carboxylate Reductase in Escherichia coli". Current Microbiology 42, n.º 6 (junio de 2001): 442–46. http://dx.doi.org/10.1007/s002840010245.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

de la FUENTE, Juan L., Angel RUMBERO, Juan F. MARTÍN y Paloma LIRAS. "Δ-1-Piperideine-6-carboxylate dehydrogenase, a new enzyme that forms α-aminoadipate in Streptomyces clavuligerus and other cephamycin C-producing actinomycetes". Biochemical Journal 327, n.º 1 (1 de octubre de 1997): 59–64. http://dx.doi.org/10.1042/bj3270059.

Texto completo
Resumen
Δ-1-Piperideine-6-carboxylate (P6C) dehydrogenase activity, which catalyses the conversion of P6C into α-aminoadipic acid, has been studied in the cephamycin C producer Streptomyces clavuligerus by both spectrophotometric and radiometric assays. The enzyme has been purified 124-fold to electrophoretic homogeneity with a 26% yield. The native protein is a monomer of 56.2 kDa that efficiently uses P6C (apparent Km 14 μM) and NAD+ (apparent Km 115 μM), but not NADP+ or other electron acceptors, as substrates. The enzyme activity was inhibited (by 66%) by its end product NADH at 0.1 mM concentration. It did not show activity towards pyrroline-5-carboxylate and was separated by Blue-Sepharose chromatography from pyrroline-5-carboxylate dehydrogenase, an enzyme involved in the catabolism of proline. P6C dehydrogenase reached maximal activity later than other early enzymes of the cephamycin pathway. The P6C dehydrogenase activity was decreased in ammonium (40 mM)-supplemented cultures, as was that of lysine 6-aminotransferase. P6C dehydrogenase activity was also found in other cephamycin C producers (Streptomyces cattleya and Nocardia lactamdurans) but not in actinomycetes that do not produce β-lactams, suggesting that it is an enzyme specific for cephamycin biosynthesis, involved in the second stage of the two-step conversion of lysine to α-aminoadipic acid.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Patel, Sagar M., Javier Seravalli, Xinwen Liang, John J. Tanner y Donald F. Becker. "Disease variants of human Δ1-pyrroline-5-carboxylate reductase 2 (PYCR2)". Archives of Biochemistry and Biophysics 703 (mayo de 2021): 108852. http://dx.doi.org/10.1016/j.abb.2021.108852.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Patel, Sagar M., Javier Seravalli, Kyle M. Stiers, John J. Tanner y Donald F. Becker. "Kinetics of human pyrroline-5-carboxylate reductase in l-thioproline metabolism". Amino Acids 53, n.º 12 (18 de noviembre de 2021): 1863–74. http://dx.doi.org/10.1007/s00726-021-03095-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Isobe, Kimiyasu, Takeo Matsuzawa y Kenji Soda. "Crystallization and Characterization of l-Pyrroline-5-carboxylate Dehydrogenase fromBacillus sphaericus". Agricultural and Biological Chemistry 51, n.º 7 (julio de 1987): 1947–53. http://dx.doi.org/10.1080/00021369.1987.10868323.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Hua, X. J., B. van de Cotte, M. Van Montagu y N. Verbruggen. "Developmental Regulation of Pyrroline-5-Carboxylate Reductase Gene Expression in Arabidopsis". Plant Physiology 114, n.º 4 (1 de agosto de 1997): 1215–24. http://dx.doi.org/10.1104/pp.114.4.1215.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Deuschle, Karen, Dietmar Funck, Giuseppe Forlani, Harald Stransky, Alexander Biehl, Dario Leister, Eric van der Graaff, Reinhard Kunze y Wolf B. Frommer. "The Role of Δ1-Pyrroline-5-Carboxylate Dehydrogenase in Proline Degradation". Plant Cell 16, n.º 12 (17 de noviembre de 2004): 3413–25. http://dx.doi.org/10.1105/tpc.104.023622.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

FLEMING, G. A., A. GRANGER, Q. R. ROGERS, M. PROSSER, D. B. FORD y J. M. PHANG. "Fluctuations in Plasma Pyrroline-5-Carboxylate Concentrations during Feeding and Fasting*". Journal of Clinical Endocrinology & Metabolism 69, n.º 2 (agosto de 1989): 448–52. http://dx.doi.org/10.1210/jcem-69-2-448.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Black, David StC, Gavin L. Edwards, Richard H. Evans, Paul A. Keller y Sean M. Laaman. "Synthesis and Reactivity of 1-Pyrroline-5-carboxylate Ester 1-Oxides". Tetrahedron 56, n.º 13 (marzo de 2000): 1889–97. http://dx.doi.org/10.1016/s0040-4020(00)00094-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Wong, P. T. H., W. L. Teo y S. F. Leong. "Some characteristics of Δ1-pyrroline-5-carboxylate dehydrogenase in rat cerebellum". Neurochemistry International 7, n.º 1 (enero de 1985): 45–49. http://dx.doi.org/10.1016/0197-0186(85)90006-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Verbruggen, N., R. Villarroel y M. Van Montagu. "Osmoregulation of a Pyrroline-5-Carboxylate Reductase Gene in Arabidopsis thaliana". Plant Physiology 103, n.º 3 (1 de noviembre de 1993): 771–81. http://dx.doi.org/10.1104/pp.103.3.771.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Krause, Kurt L., Emily M. Christensen, Sagar M. Patel, David A. Korasick, Ashley C. Campbell, Donald F. Becker y John J. Tanner. "Correcting the record – cofactor binding of human pyrroline-5-carboxylate reductase". Acta Crystallographica Section A Foundations and Advances 73, a2 (1 de diciembre de 2017): C49. http://dx.doi.org/10.1107/s2053273317095213.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Terao, Yukiyasu, Shigeru Nakamori y Hiroshi Takagi. "Gene Dosage Effect of l-Proline Biosynthetic Enzymes on l-Proline Accumulation and Freeze Tolerance in Saccharomyces cerevisiae". Applied and Environmental Microbiology 69, n.º 11 (noviembre de 2003): 6527–32. http://dx.doi.org/10.1128/aem.69.11.6527-6532.2003.

Texto completo
Resumen
ABSTRACT We have previously reported that l-proline has cryoprotective activity in Saccharomyces cerevisiae. A freeze-tolerant mutant with l-proline accumulation was recently shown to carry an allele of the PRO1 gene encoding γ-glutamyl kinase, which resulted in a single amino acid substitution (Asp154Asn). Interestingly, this mutation enhanced the activities of γ-glutamyl kinase and γ-glutamyl phosphate reductase, both of which catalyze the first two steps of l-proline synthesis and which together may form a complex in vivo. Here, we found that the Asp154Asn mutant γ-glutamyl kinase was more thermostable than the wild-type enzyme, which suggests that this mutation elevated the apparent activities of two enzymes through a stabilization of the complex. We next examined the gene dosage effect of three l-proline biosynthetic enzymes, including Δ1-pyrroline-5-carboxylate reductase, which converts Δ1-pyrroline-5-carboxylate into l-proline, on l-proline accumulation and freeze tolerance in a non-l-proline-utilizing strain. Overexpression of the wild-type enzymes has no influence on l-proline accumulation, which suggests that the complex is very unstable in nature. However, co-overexpression of the mutant γ-glutamyl kinase and the wild-type γ-glutamyl phosphate reductase was effective for l-proline accumulation, probably due to a stabilization of the complex. These results indicate that both enzymes, not Δ1-pyrroline-5-carboxylate reductase, are rate-limiting enzymes in yeast cells. A high tolerance for freezing clearly correlated with higher levels of l-proline in yeast cells. Our findings also suggest that, in addition to its cryoprotective activity, intracellular l-proline could protect yeast cells from damage by oxidative stress. The approach described here provides a valuable method for breeding novel yeast strains that are tolerant of both freezing and oxidative stresses.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Biancalana, Lorenzo, Giada Tuci, Fabio Piccinelli, Fabio Marchetti, Marco Bortoluzzi y Guido Pampaloni. "Vanadium(v) oxoanions in basic water solution: a simple oxidative system for the one pot selective conversion ofl-proline to pyrroline-2-carboxylate". Dalton Transactions 46, n.º 43 (2017): 15059–69. http://dx.doi.org/10.1039/c7dt02702h.

Texto completo
Resumen
The unusual, one pot conversion ofl-proline to pyrroline-2-carboxylate, using simple V(v) species (NH4VO3or V2O5) as oxidants in basic water medium, is described. No reaction was observed with primary and tertiary α-amino acids.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Ishikawa, Hiroaki, Takeo Matsuzawa, Koji Ohashi y Yoichi Nagamura. "A novel method for measuring serum ornithine carbamoyltransferase". Annals of Clinical Biochemistry: International Journal of Laboratory Medicine 40, n.º 3 (1 de mayo de 2003): 264–68. http://dx.doi.org/10.1258/000456303321610583.

Texto completo
Resumen
Background: Serum ornithine carbamoyltransferase is a diagnostic marker of hepatic disorders due to its localization in periportal mitochondria. Methods: We have developed a new method for the determination of serum ornithine carbamoyltransferase. It is based on the reverse reaction of ornithine carbamoyltransferase, using ornithine-ketoacid aminotransferase, ∆1-pyrroline-5-carboxylate dehydrogenase and glutamate dehydrogenase, which together convert citrulline through ornithine to glutamate. The glutamate is then quantitatively measured using glutamate oxidase and Trinder's reagent. Results: The results obtained by this method agreed well with those obtained using the diacetylmonoxime method as a gold standard [correlation coefficient (r) = 0·973 P<0·001]. The endogenous amino acids sensitive to this method in serum (glutamate, ornithine and ∆1-pyrroline-5-carboxylate) were eliminated by the initial futile reaction. The new method appears to be more accurate at low levels of ornithine carbamoyltransferase activity than the diacetylmonoxime method. Conclusions: Here we report a new method for serum ornithine carbamoyl-transferase assay which might be useful for clinical diagnosis of hepatic disorders, including hepatic cancer.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Struys, Eduard A., Erwin E. W. Jansen y Gajja S. Salomons. "Human pyrroline-5-carboxylate reductase (PYCR1) acts on Δ1-piperideine-6-carboxylate generating L-pipecolic acid". Journal of Inherited Metabolic Disease 37, n.º 3 (16 de enero de 2014): 327–32. http://dx.doi.org/10.1007/s10545-013-9673-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Christensen, Emily M., Alexandra N. Bogner, Anke Vandekeere, Gabriela S. Tam, Sagar M. Patel, Donald F. Becker, Sarah-Maria Fendt y John J. Tanner. "In crystallo screening for proline analog inhibitors of the proline cycle enzyme PYCR1". Journal of Biological Chemistry 295, n.º 52 (27 de octubre de 2020): 18316–27. http://dx.doi.org/10.1074/jbc.ra120.016106.

Texto completo
Resumen
Pyrroline-5-carboxylate reductase 1 (PYCR1) catalyzes the biosynthetic half-reaction of the proline cycle by reducing Δ1-pyrroline-5-carboxylate (P5C) to proline through the oxidation of NAD(P)H. Many cancers alter their proline metabolism by up-regulating the proline cycle and proline biosynthesis, and knockdowns of PYCR1 lead to decreased cell proliferation. Thus, evidence is growing for PYCR1 as a potential cancer therapy target. Inhibitors of cancer targets are useful as chemical probes for studying cancer mechanisms and starting compounds for drug discovery; however, there is a notable lack of validated inhibitors for PYCR1. To fill this gap, we performed a small-scale focused screen of proline analogs using X-ray crystallography. Five inhibitors of human PYCR1 were discovered: l-tetrahydro-2-furoic acid, cyclopentanecarboxylate, l-thiazolidine-4-carboxylate, l-thiazolidine-2-carboxylate, and N-formyl l-proline (NFLP). The most potent inhibitor was NFLP, which had a competitive (with P5C) inhibition constant of 100 μm. The structure of PYCR1 complexed with NFLP shows that inhibitor binding is accompanied by conformational changes in the active site, including the translation of an α-helix by 1 Å. These changes are unique to NFLP and enable additional hydrogen bonds with the enzyme. NFLP was also shown to phenocopy the PYCR1 knockdown in MCF10A H-RASV12 breast cancer cells by inhibiting de novo proline biosynthesis and impairing spheroidal growth. In summary, we generated the first validated chemical probe of PYCR1 and demonstrated proof-of-concept for screening proline analogs to discover inhibitors of the proline cycle.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Hu, Chien-an A., Wei-Wen Lin y David Valle. "Cloning, Characterization, and Expression of cDNAs Encoding Human -Pyrroline-5-carboxylate Dehydrogenase". Journal of Biological Chemistry 271, n.º 16 (19 de abril de 1996): 9795–800. http://dx.doi.org/10.1074/jbc.271.16.9795.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Mixson, A. James, Alnora N. Granger y James M. Phang. "An Assay for Pyrroline 5-Carboxylate Based on its Interaction with Cysteine". Analytical Letters 24, n.º 4 (abril de 1991): 625–41. http://dx.doi.org/10.1080/00032719108052931.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

ISOBE, Kimiyasu, Takeo MATSUZAWA y Kenji SODA. "Crystallization and characterization of 1-pyrroline-5-carboxylate dehydrogenase from Bacillus sphaericus." Agricultural and Biological Chemistry 51, n.º 7 (1987): 1947–53. http://dx.doi.org/10.1271/bbb1961.51.1947.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Rayapati, P. John, Cecil R. Stewart y Ethan Hack. "Pyrroline-5-Carboxylate Reductase Is in Pea (Pisum sativum L.) Leaf Chloroplasts". Plant Physiology 91, n.º 2 (1 de octubre de 1989): 581–86. http://dx.doi.org/10.1104/pp.91.2.581.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Dougherty, K. M., M. C. Brandriss y D. Valle. "Cloning human pyrroline-5-carboxylate reductase cDNA by complementation in Saccharomyces cerevisiae." Journal of Biological Chemistry 267, n.º 2 (enero de 1992): 871–75. http://dx.doi.org/10.1016/s0021-9258(18)48364-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Mixson, A. James y James M. Phang. "Structural analogues of pyrroline 5-carboxylate specifically inhibit its uptake into cells". Journal of Membrane Biology 121, n.º 3 (mayo de 1991): 269–77. http://dx.doi.org/10.1007/bf01951560.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Haslett, Michael R., Desmond Pink, Barry Walters y Margaret E. Brosnan. "Assay and subcellular localization of pyrroline-5-carboxylate dehydrogenase in rat liver". Biochimica et Biophysica Acta (BBA) - General Subjects 1675, n.º 1-3 (noviembre de 2004): 81–86. http://dx.doi.org/10.1016/j.bbagen.2004.08.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Fleming, G. Alexander, Gary Steel, David Valle, Alnora S. Granger y James M. Phang. "The aqueous humor of rabbit contains high concentrations of pyrroline-5-carboxylate". Metabolism 35, n.º 10 (octubre de 1986): 933–37. http://dx.doi.org/10.1016/0026-0495(86)90057-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Samuels, Susan E., Karen S. Acton y Ronald O. Ball. "Pyrroline-5-Carboxylate Reductase and Proline Oxidase Activity in the Neonatal Pig". Journal of Nutrition 119, n.º 12 (1 de diciembre de 1989): 1999–2004. http://dx.doi.org/10.1093/jn/119.12.1999.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Trakadis, Y., A. Khan, C. Ste Martin, M. Berry y D. Buhas. "Two new unrelated cases of pyrroline-5-carboxylate synthase — New founder effect?" Clinical Biochemistry 47, n.º 15 (octubre de 2014): 145. http://dx.doi.org/10.1016/j.clinbiochem.2014.07.061.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Giberti, Samuele, Michele Bertazzini, Mattia Liboni, Łukasz Berlicki, Paweł Kafarski y Giuseppe Forlani. "Phytotoxicity of aminobisphosphonates targeting bothδ1-pyrroline-5-carboxylate reductase and glutamine synthetase". Pest Management Science 73, n.º 2 (23 de mayo de 2016): 435–43. http://dx.doi.org/10.1002/ps.4299.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Belitsky, Boris R., Jeanette Brill, Erhard Bremer y Abraham L. Sonenshein. "Multiple Genes for the Last Step of Proline Biosynthesis in Bacillus subtilis". Journal of Bacteriology 183, n.º 14 (15 de julio de 2001): 4389–92. http://dx.doi.org/10.1128/jb.183.14.4389-4392.2001.

Texto completo
Resumen
ABSTRACT The complete Bacillus subtilis genome contains four genes (proG, proH, proI, and comER) with the potential to encode Δ1-pyrroline-5-carboxylate reductase, a proline biosynthetic enzyme. Simultaneous defects in three of these genes (proG, proH, and proI) were required to confer proline auxotrophy, indicating that the products of these genes are mostly interchangeable with respect to the last step in proline biosynthesis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

ZHANG, Fei, Jia-Dong HE, Qiu-Dan NI, Qiang-Sheng WU y Ying-Ning ZOU. "Enhancement of Drought Tolerance in Trifoliate Orange by Mycorrhiza: Changes in Root Sucrose and Proline Metabolisms". Notulae Botanicae Horti Agrobotanici Cluj-Napoca 46, n.º 1 (1 de enero de 2018): 270–76. http://dx.doi.org/10.15835/nbha46110983.

Texto completo
Resumen
Sucrose and proline metabolisms are often associated with drought tolerance of plants. This study was conducted to investigate the effects of two arbuscular mycorrhizal fungi (AMF) species (Funneliformis mosseae and Paraglomus occultum) on root biomass, lateral root number, root sucrose and proline metabolisms in trifoliate orange (Poncirus trifoliata) seedlings under well-watered (WW) or drought stress (DS). All the AMF treatments significantly increased root dry weight, taproot length, and the number of lateral roots in 1st, 2nd, and 3rd class under WW and DS. Mycorrhizal seedlings conferred considerably higher fructose and glucose concentrations but lower sucrose accumulation, regardless of soil water status. Under DS, F. mosseae treatment significantly increased root sucrose synthase (SS, degradative direction) and sucrose phosphate synthase (SPS) activity but deceased root acid invertase (AI) and neutral invertase (NI) activity, and P. occultum inoculation markedly increased root AI, NI, SS, and SPS activities. AMF treatments led to a lower proline accumulation in roots, in company with lower activities of Δ1-pyrroline-5-carboxylate synthetase (P5CS), δ-ornithine aminotransferase (OAT), Δ1-pyrroline-5-carboxylate reductase (P5CR), and proline dehydrogenase (ProDH) in roots. It appears that the AM symbiosis induced greater root development and sucrose and proline metabolisms to adapt DS.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Li, Linhua, Yujia Ye, Peng Sang, Yirui Yin, Wei Hu, Jing Wang, Chao Zhang et al. "Effect of R119G Mutation on Human P5CR1 Dynamic Property and Enzymatic Activity". BioMed Research International 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/4184106.

Texto completo
Resumen
Pyrroline-5-carboxylate reductase (P5CR1) is a universal housekeeping enzyme that catalyzes the reduction of Δ1-pyrroline-5-carboxylate (P5C) to proline with concomitant oxidation of NAD(P)H to NAD(P)+. The enzymatic cycle between P5C and proline is important for function in amino acid metabolism, apoptosis, and intracellular redox potential balance in mitochondria. Autosomal recessive cutis laxa (ARCL) results from a mutation in P5CR1 encoded by PYCR1. Specifically, the R119G mutation is reported to be linked to ARCL although it has not yet been characterized. We synthesized R119G P5CR1 and compared it to WT P5CR1. Foldx prediction of WT and R119G mutant P5CR1 protein stability suggests that the R119G mutation could significantly reduce protein stability. We also performed enzymatic activity assays to determine how the mutation impacts P5CR1 enzymatic function. The results of these experiments show that mutagenesis of R119 to G decreases P5CR1 catalytic efficiency for 3,4-dehydro-L-proline relative to WT. Mutagenesis and kinetic studies reveal that the activity of the mutant decreases as temperature increases from 5°C to 37°C, with almost no activity at 37°C, indicating that this mutation impairs P5CR1 function in vivo. Conversely, WT P5CR1 retains its activity after incubation at 37°C and has essentially no remaining activity at 75°C. Taken together, our experimental results indicate the R119G mutation could be an involving pathomechanism for ARCL.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Yao, Ziting, Chengwu Zou, Hui Zhou, Jinzi Wang, Lidan Lu, Yang Li y Baoshan Chen. "Δ1-Pyrroline-5-Carboxylate/Glutamate Biogenesis Is Required for Fungal Virulence and Sporulation". PLoS ONE 8, n.º 9 (9 de septiembre de 2013): e73483. http://dx.doi.org/10.1371/journal.pone.0073483.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Forlani, Giuseppe, Łukasz Berlicki, Mattia Duò, Gabriela Dziędzioła, Samuele Giberti, Michele Bertazzini y Paweł Kafarski. "Synthesis and Evaluation of Effective Inhibitors of Plant δ1-Pyrroline-5-carboxylate Reductase". Journal of Agricultural and Food Chemistry 61, n.º 28 (3 de julio de 2013): 6792–98. http://dx.doi.org/10.1021/jf401234s.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Yang, Yanping, Shengfeng Xu, Min Zhang, Ruiliang Jin, Lu Zhang, Jialing Bao y Honghai Wang. "Purification and characterization of a functionally active Mycobacterium tuberculosis pyrroline-5-carboxylate reductase". Protein Expression and Purification 45, n.º 1 (enero de 2006): 241–48. http://dx.doi.org/10.1016/j.pep.2005.08.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía