Artículos de revistas sobre el tema "Proton batteries"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Proton batteries".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
NISHIYAMA, Toshihiko. "Proton Polymer Batteries". Kobunshi 54, n.º 12 (2005): 885. http://dx.doi.org/10.1295/kobunshi.54.885.
Texto completoXu, Yunkai, Xianyong Wu y Xiulei Ji. "The Renaissance of Proton Batteries". Small Structures 2, n.º 5 (febrero de 2021): 2000113. http://dx.doi.org/10.1002/sstr.202000113.
Texto completoMa, Nattapol, Soracha Kosasang, Atsushi Yoshida y Satoshi Horike. "Proton-conductive coordination polymer glass for solid-state anhydrous proton batteries". Chemical Science 12, n.º 16 (2021): 5818–24. http://dx.doi.org/10.1039/d1sc00392e.
Texto completoRudhziah, Siti, Salmiah Ibrahim y Mohamed Nor Sabirin. "Polymer Electrolyte of PVDF-HFP/PEMA-NH4CF3So3-TiO2 and its Application in Proton Batteries". Advanced Materials Research 287-290 (julio de 2011): 285–88. http://dx.doi.org/10.4028/www.scientific.net/amr.287-290.285.
Texto completoLiu, Lunyang, Wenduo Chen, Tingli Liu, Xiangxin Kong, Jifu Zheng y Yunqi Li. "Rational design of hydrocarbon-based sulfonated copolymers for proton exchange membranes". Journal of Materials Chemistry A 7, n.º 19 (2019): 11847–57. http://dx.doi.org/10.1039/c9ta00688e.
Texto completoToorabally, Milad, Damien Bregiroux, Natacha Krins, Arvinder Singh, Damien Dambournet y Christel Laberty-Robert. "A Negative-Based TiO2 Electrode for Aqueous Proton Batteries". ECS Meeting Abstracts MA2023-01, n.º 1 (28 de agosto de 2023): 459. http://dx.doi.org/10.1149/ma2023-011459mtgabs.
Texto completoPalanisamy, Gowthami y Tae Hwan Oh. "TiO2 Containing Hybrid Composite Polymer Membranes for Vanadium Redox Flow Batteries". Polymers 14, n.º 8 (15 de abril de 2022): 1617. http://dx.doi.org/10.3390/polym14081617.
Texto completoLee, Chi-Yuan, Chia-Hung Chen, Yun-Hsiu Chien y Zhi-Yu Huang. "A Proton Battery Stack Real-Time Monitor with a Flexible Six-in-One Microsensor". Membranes 12, n.º 8 (13 de agosto de 2022): 779. http://dx.doi.org/10.3390/membranes12080779.
Texto completoIkezawa, Atsunori, Tadaaki Nishizawa, Yukinori Koyama y Hajime Arai. "Development of MoO3-Based Proton Batteries". ECS Meeting Abstracts MA2022-02, n.º 1 (9 de octubre de 2022): 17. http://dx.doi.org/10.1149/ma2022-02117mtgabs.
Texto completoHan, Tianyuan, Ying Bi, Ming Song y Penghua Qian. "Review of SPEEK Amphoteric Proton Exchange Membranes in All Vanadium Flow Batteries". Academic Journal of Science and Technology 8, n.º 1 (21 de noviembre de 2023): 218–22. http://dx.doi.org/10.54097/ajst.v8i1.14315.
Texto completoZhou, Limin, Luojia Liu, Zhimeng Hao, Zhenhua Yan, Xue-Feng Yu, Paul K. Chu, Kai Zhang y Jun Chen. "Opportunities and challenges for aqueous metal-proton batteries". Matter 4, n.º 4 (abril de 2021): 1252–73. http://dx.doi.org/10.1016/j.matt.2021.01.022.
Texto completoYu, Juezhi, Jing Li, Zhi Yi Leong, Dong-sheng Li, Jiong Lu, Qing Wang y Hui Ying Yang. "A crystalline dihydroxyanthraquinone anodic material for proton batteries". Materials Today Energy 22 (diciembre de 2021): 100872. http://dx.doi.org/10.1016/j.mtener.2021.100872.
Texto completoGuo, Haocheng, Damian Goonetilleke, Neeraj Sharma, Wenhao Ren, Zhen Su, Aditya Rawal y Chuan Zhao. "Two-Phase Electrochemical Proton Transport and Storage in α-MoO3 for Proton Batteries". Cell Reports Physical Science 1, n.º 10 (octubre de 2020): 100225. http://dx.doi.org/10.1016/j.xcrp.2020.100225.
Texto completoKeramidas, Anastasios D., Sofia Hadjithoma, Chryssoula Drouza, Tatiana Santos Andrade y Panagiotis Lianos. "Four electron selective O2 reduction by a tetranuclear vanadium(IV/V)/hydroquinonate catalyst: application in the operation of Zn–air batteries". New Journal of Chemistry 46, n.º 2 (2022): 470–79. http://dx.doi.org/10.1039/d1nj03626b.
Texto completoXu, Nansheng, Cuijuan Zhang y Kevin Huang. "Proton-mediated energy storage in intermediate-temperature solid-oxide metal–air batteries". Journal of Materials Chemistry A 6, n.º 42 (2018): 20659–62. http://dx.doi.org/10.1039/c8ta08180h.
Texto completoBeydaghi, Hossein, Sebastiano Bellani, Leyla Najafi, Reinier Oropesa-Nuñez, Gabriele Bianca, Ahmad Bagheri, Irene Conticello et al. "Sulfonated NbS2-based proton-exchange membranes for vanadium redox flow batteries". Nanoscale 14, n.º 16 (2022): 6152–61. http://dx.doi.org/10.1039/d1nr07872k.
Texto completoGhosh, Meena, Vidyanand Vijayakumar, Maria Kurian, Swati Dilwale y Sreekumar Kurungot. "Naphthalene dianhydride organic anode for a ‘rocking-chair’ zinc–proton hybrid ion battery". Dalton Transactions 50, n.º 12 (2021): 4237–43. http://dx.doi.org/10.1039/d0dt04404k.
Texto completoLebedeva, O. V. y E. I. Sipkina. "Composite membranes for fuel cells". Proceedings of Universities. Applied Chemistry and Biotechnology 13, n.º 2 (1 de julio de 2023): 172–83. http://dx.doi.org/10.21285/2227-2925-2023-13-2-172-183.
Texto completoRani, M. S. A., M. N. F. Norrrahim, V. F. Knight, N. M. Nurazzi, K. Abdan y S. H. Lee. "A Review of Solid-State Proton–Polymer Batteries: Materials and Characterizations". Polymers 15, n.º 19 (9 de octubre de 2023): 4032. http://dx.doi.org/10.3390/polym15194032.
Texto completoYap, S. C. y A. A. Mohamad. "Proton Batteries with Hydroponics Gel as Gel Polymer Electrolyte". Electrochemical and Solid-State Letters 10, n.º 6 (2007): A139. http://dx.doi.org/10.1149/1.2717366.
Texto completoAlias, Siti Salwa, Siew Mian Chee y Ahmad Azmin Mohamad. "Chitosan–ammonium acetate–ethylene carbonate membrane for proton batteries". Arabian Journal of Chemistry 10 (mayo de 2017): S3687—S3698. http://dx.doi.org/10.1016/j.arabjc.2014.05.001.
Texto completoYe, Zhoulin, Nanjie Chen, Zigui Zheng, Lei Xiong y Dongyang Chen. "Preparation of Sulfonated Poly(arylene ether)/SiO2 Composite Membranes with Enhanced Proton Selectivity for Vanadium Redox Flow Batteries". Molecules 28, n.º 7 (31 de marzo de 2023): 3130. http://dx.doi.org/10.3390/molecules28073130.
Texto completoSon, Tae Yang, Kwang Seop Im, Ha Neul Jung y Sang Yong Nam. "Blended Anion Exchange Membranes for Vanadium Redox Flow Batteries". Polymers 13, n.º 16 (23 de agosto de 2021): 2827. http://dx.doi.org/10.3390/polym13162827.
Texto completoGreen, Erica, Emily Fullwood, Julieann Selden y Ilya Zharov. "Functional membranes via nanoparticle self-assembly". Chemical Communications 51, n.º 37 (2015): 7770–80. http://dx.doi.org/10.1039/c5cc01388g.
Texto completoChen, Qi, Liming Ding, Lihua Wang, Haijun Yang y Xinhai Yu. "High Proton Selectivity Sulfonated Polyimides Ion Exchange Membranes for Vanadium Flow Batteries". Polymers 10, n.º 12 (27 de noviembre de 2018): 1315. http://dx.doi.org/10.3390/polym10121315.
Texto completoGallastegui, Antonela, Daniela Minudri, Nerea Casado, Nicolas Goujon, Fernando Ruipérez, Nagaraj Patil, Christophe Detrembleur, Rebeca Marcilla y David Mecerreyes. "Proton trap effect on catechol–pyridine redox polymer nanoparticles as organic electrodes for lithium batteries". Sustainable Energy & Fuels 4, n.º 8 (2020): 3934–42. http://dx.doi.org/10.1039/d0se00531b.
Texto completoYim, Haena, Seung-Ho Yu, So Yeon Yoo, Yung-Eun Sung y Ji-Won Choi. "Li Storage of Calcium Niobates for Lithium Ion Batteries". Journal of Nanoscience and Nanotechnology 15, n.º 10 (1 de octubre de 2015): 8103–7. http://dx.doi.org/10.1166/jnn.2015.11291.
Texto completoChen, Hong-Li, Xiao-Ning Jiao y Jin-Tao Zhou. "The research progress of polyhedral oligomeric silsesquioxane (POSS) applied to electrical energy storage elements". Functional Materials Letters 10, n.º 02 (abril de 2017): 1730001. http://dx.doi.org/10.1142/s1793604717300018.
Texto completoOberoi, Amandeep, Parag Nijhawan y Parminder Singh. "A Novel Electrochemical Hydrogen Storage-Based Proton Battery for Renewable Energy Storage". Energies 12, n.º 1 (28 de diciembre de 2018): 82. http://dx.doi.org/10.3390/en12010082.
Texto completoDeng, Fengjun, Yuhang Zhang y Yingjian Yu. "Conductive Metal–Organic Frameworks for Rechargeable Lithium Batteries". Batteries 9, n.º 2 (3 de febrero de 2023): 109. http://dx.doi.org/10.3390/batteries9020109.
Texto completoMeng, Tiejun, Kwo Young, David Beglau, Shuli Yan, Peng Zeng y Mark Ming-Cheng Cheng. "Hydrogenated amorphous silicon thin film anode for proton conducting batteries". Journal of Power Sources 302 (enero de 2016): 31–38. http://dx.doi.org/10.1016/j.jpowsour.2015.10.045.
Texto completoWang, Wei. "Proton Activity and Pathway in Aqueous Organic Redox Flow Batteries". ECS Meeting Abstracts MA2023-01, n.º 3 (28 de agosto de 2023): 741. http://dx.doi.org/10.1149/ma2023-013741mtgabs.
Texto completoGuo, Haocheng y Chuan Zhao. "An Emerging Chemistry Revives Proton Batteries". Small Methods, 10 de septiembre de 2023. http://dx.doi.org/10.1002/smtd.202300699.
Texto completozha, Wenwen, Qiushi Ruan, Long Ma, Meng Liu, Huiwen Lin, Litao Sun, ZhengMing Sun y Li Tao. "Highly Stable Photo‐Assisted Zinc‐Ion Batteries via Regulated Photo‐Induced Proton Transfer". Angewandte Chemie, 9 de febrero de 2024. http://dx.doi.org/10.1002/ange.202400621.
Texto completozha, Wenwen, Qiushi Ruan, Long Ma, Meng Liu, Huiwen Lin, Litao Sun, ZhengMing Sun y Li Tao. "Highly Stable Photo‐Assisted Zinc‐Ion Batteries via Regulated Photo‐Induced Proton Transfer". Angewandte Chemie International Edition, 9 de febrero de 2024. http://dx.doi.org/10.1002/anie.202400621.
Texto completoQin, Zili, Xilong Li, Qi Dong, Kaiwen Qi, Shiyuan Chen y Yongchun Zhu. "Limiting Interfacial Free Water and Proton Concentration by Hydrogel Electrolytes for Stable MoO3 Anode in a Proton Battery". Small, 21 de marzo de 2024. http://dx.doi.org/10.1002/smll.202400108.
Texto completoTong, Yuhao, Yuan Wei, AJing Song, Yuanyuan Ma y Jianping Yang. "Polyaniline/Tungsten Trioxide Organic‐Inorganic Hybrid Anode for Aqueous Proton Batteries". Chemistry – A European Journal, 6 de mayo de 2024. http://dx.doi.org/10.1002/chem.202401257.
Texto completoIkezawa, Atsunori, Yukinori Koyama, Tadaaki Nishizawa y Hajime Arai. "A High Voltage Aqueous Proton Battery using an Optimized Operation of a MoO3 Positive Electrode". Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d2ta08581j.
Texto completoSu, Zhen, Haocheng Guo y Chuan Zhao. "Rational Design of Electrode–Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries". Nano-Micro Letters 15, n.º 1 (10 de abril de 2023). http://dx.doi.org/10.1007/s40820-023-01071-z.
Texto completoDong, Xiaoyu, Zhiwei Li, Bing Ding, Hui Dou y Xiaogang Zhang. "Electrolyte and Electrode–Electrolyte Interface for Proton Batteries: Insights and Challenges". ChemElectroChem, 14 de diciembre de 2023. http://dx.doi.org/10.1002/celc.202300569.
Texto completoLiu, Huan, Xiang Cai, Xiaojuan Zhi, Shuanlong Di, Boyin Zhai, Hongguan Li, Shulan Wang y Li Li. "An Amorphous Anode for Proton Battery". Nano-Micro Letters 15, n.º 1 (30 de diciembre de 2022). http://dx.doi.org/10.1007/s40820-022-00987-2.
Texto completoDong, Hao, Lin-Lin Wang, Zhi-Rong Feng, Jie Song, Qiao Qiao, Yu-Ping Wu y Xiaoming Ren. "A Freezing-Tolerant Superior Proton Conductive Hydrogel Comprised of Sulfonated Poly(ether-ether-ketone) and Poly(vinyl-alcohol) as Quasi-Solid-State Electrolyte in Proton Battery". Journal of Materials Chemistry C, 2023. http://dx.doi.org/10.1039/d3tc02665e.
Texto completoWang, Mingchao, Gang Wang, Chandrasekhar Naisa, Yubin Fu, Sai Manoj Gali, Silvia Paasch, Mao Wang et al. "Poly(benzimidazobenzophenanthroline)‐Ladder‐Type Two‐Dimensional Conjugated Covalent Organic Framework for Fast Proton Storage". Angewandte Chemie, 10 de septiembre de 2023. http://dx.doi.org/10.1002/ange.202310937.
Texto completoWang, Mingchao, Gang Wang, Chandrasekhar Naisa, Yubin Fu, Sai Manoj Gali, Silvia Paasch, Mao Wang et al. "Poly(benzimidazobenzophenanthroline)‐Ladder‐Type Two‐Dimensional Conjugated Covalent Organic Framework for Fast Proton Storage". Angewandte Chemie International Edition, 10 de septiembre de 2023. http://dx.doi.org/10.1002/anie.202310937.
Texto completoChen, Mengting, Wenbao Liu, Danyang Ren, Yunlin An, Chang Shu, Shengguang Zhang, Wenjun Liang, Jianchao Sun, Feiyu Kang y Fuyi Jiang. "Proton Self‐Limiting Effect of Solid Acids Boosts Electrochemical Performance of Zinc‐ion Batteries". Advanced Functional Materials, 8 de mayo de 2024. http://dx.doi.org/10.1002/adfm.202404983.
Texto completoZhang, Xiaoqing, Xin Zhang, Yao Miao, Qinghong Huang, Zhidong Chen, Dengfeng Guo, Juan Xu, Yong-miao Shen y Jianyu Cao. "Rechargeable aqueous phenazine-Prussian blue proton battery with long cycle life". Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d2ta09749d.
Texto completoGuo, Quanquan, Wei Li, Xiaodong Li, Jiaxu Zhang, Davood Sabaghi, Jianjun Zhang, Bowen Zhang et al. "Proton-selective coating enables fast-kinetics high-mass-loading cathodes for sustainable zinc batteries". Nature Communications 15, n.º 1 (8 de marzo de 2024). http://dx.doi.org/10.1038/s41467-024-46464-9.
Texto completoXu, Tiezhu, Di Wang, Zhiwei Li, Ziyang Chen, Jinhui Zhang, Tingsong Hu, Xiaogang Zhang y Laifa Shen. "Electrochemical Proton Storage: From Fundamental Understanding to Materials to Devices". Nano-Micro Letters 14, n.º 1 (14 de junio de 2022). http://dx.doi.org/10.1007/s40820-022-00864-y.
Texto completoYin, Chengjie, Chengling Pan, Yusong Pan, Jinsong Hu y Guozhao Fang. "Proton Self‐Doped Polyaniline with High Electrochemical Activity for Aqueous Zinc‐Ion Batteries". Small Methods, 12 de agosto de 2023. http://dx.doi.org/10.1002/smtd.202300574.
Texto completoWu, Sicheng, Junbo Chen, Zhen Su, Haocheng Guo, Tingwen Zhao, Chen Jia, Jennifer Stansby et al. "Molecular Crowding Electrolytes for Stable Proton Batteries". Small, 26 de septiembre de 2022, 2202992. http://dx.doi.org/10.1002/smll.202202992.
Texto completo