Literatura académica sobre el tema "Proton batteries"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Proton batteries".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Proton batteries"

1

NISHIYAMA, Toshihiko. "Proton Polymer Batteries". Kobunshi 54, n.º 12 (2005): 885. http://dx.doi.org/10.1295/kobunshi.54.885.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Xu, Yunkai, Xianyong Wu y Xiulei Ji. "The Renaissance of Proton Batteries". Small Structures 2, n.º 5 (febrero de 2021): 2000113. http://dx.doi.org/10.1002/sstr.202000113.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Ma, Nattapol, Soracha Kosasang, Atsushi Yoshida y Satoshi Horike. "Proton-conductive coordination polymer glass for solid-state anhydrous proton batteries". Chemical Science 12, n.º 16 (2021): 5818–24. http://dx.doi.org/10.1039/d1sc00392e.

Texto completo
Resumen
Melt-quenched coordination polymer glass shows exclusive H+ conductivity (8.0 × 10−3 S cm−1 at 120 °C, anhydrous) and optimal mechanical properties (42.8 Pa s at 120 °C), enables the operation of an all-solid-state proton battery from RT to 110 °C.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Rudhziah, Siti, Salmiah Ibrahim y Mohamed Nor Sabirin. "Polymer Electrolyte of PVDF-HFP/PEMA-NH4CF3So3-TiO2 and its Application in Proton Batteries". Advanced Materials Research 287-290 (julio de 2011): 285–88. http://dx.doi.org/10.4028/www.scientific.net/amr.287-290.285.

Texto completo
Resumen
In this study, composite polymer electrolytes were prepared by addition of titanium oxide, TiO2nanofiller into polyvinylidene fluoride-co-hexafluoropropylene/polymethyl methacrylate-ammonium triflate (PVDF-HFP/PEMA-NH4CF3SO3) complex. The effect of TiO2on conductivity of the complex was examined using impedance spectroscopy. The highest room temperature conductivity of 1.32 × 10-3S cm-1was shown by the system containing 5 wt % of TiO2. This system was used for the fabrication of proton batteries with the configurations of (Zn + ZnSO4.7H2O + C + PTFE)/PVDF-HFP/PEMA-NH4CF3SO3-(5wt%)TiO2/(MnO2 + C + PTFE) and (Zn + ZnSO4.7H2O + C + PTFE)/PVDF-HFP/PEMA-NH4CF3SO3-(5wt%)TiO2/(MnO2 + PbO2+ C + PTFE). The performance of the batteries indicated potential application of the electrolyte system in proton batteries.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Liu, Lunyang, Wenduo Chen, Tingli Liu, Xiangxin Kong, Jifu Zheng y Yunqi Li. "Rational design of hydrocarbon-based sulfonated copolymers for proton exchange membranes". Journal of Materials Chemistry A 7, n.º 19 (2019): 11847–57. http://dx.doi.org/10.1039/c9ta00688e.

Texto completo
Resumen
Developing novel hydrocarbon-based proton exchange membranes is at the Frontier of research on fuel cells, batteries and electrolysis, aiming to reach the demand for advanced performance in proton conductivity, fuel retardation, swelling, mechanical and thermal stability etc.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Toorabally, Milad, Damien Bregiroux, Natacha Krins, Arvinder Singh, Damien Dambournet y Christel Laberty-Robert. "A Negative-Based TiO2 Electrode for Aqueous Proton Batteries". ECS Meeting Abstracts MA2023-01, n.º 1 (28 de agosto de 2023): 459. http://dx.doi.org/10.1149/ma2023-011459mtgabs.

Texto completo
Resumen
Complementary solutions to Li-ion batteries must be studied for the growing need for energy demand. Accordingly, we have been interested in developing negative electrode materials of TiO2 capable of reversibly intercalating proton ions for aqueous batteries. One of these batteries’ main challenges comes from the low potential window available. Aqueous batteries cannot provide sufficient energy density with a thermodynamic working potential of only 1.23V. To do so, we have optimized the intrinsic transport properties of proton-ions can lead to the reduction of side reactions such as Hydrogen Evolution Reaction (HER). Solvothermal route synthesis made at different temperatures (from 90°C to 150°C) gives access to different TiO2 structures. At 90°C, a lamellar type lepidocrocite is obtained, including sheets of “TiO2” and water in the inter-lamellar spaces. This inter-lamellar space allows proton conduction by the Grotthus mechanism [1]. But, lepidocrocite type TiO2has been shown to be a non-conductive ionic conductor. To make it conductive, different cations can be inserted into the inter-lamellar space during the solvothermal synthesis, thus allowing the reorganization of water molecules, then facilitating the intercalation, conduction, and diffusion of protons [2]. Several levels of Zn2+ were tested: from 10 to 50 mol% relative to Ti4 +. At 150°C, we have been able to stabilize a complete condensed anatase (one polymorph of TiO2) phase while a defect anatase phase has been synthesized at a temperature between 90°C and 150°C. Interestingly, the quantity of defect can be tuned by the temperature and the hydrolysis ratio, h=nH2O/nTi=3.33 [3]. These defects are mainly cationic vacancies, thanks to X-Ray Pair Distribution Function (PDF) analysis. The electrochemical properties of these materials (shaped with carbon black as conductive support and Nafion as a binder) were studied in half-cell aqueous electrolyte buffered at pH 5 (CH3COOH/CH3COOK, pKa = 4.76, (1M)). Experimental capacities of more than 100 mAh/g, 80% of coulombic efficiency over 100 cycles have been obtained and potentials down to -1.4V (V vs Ag/AgCl, KCl saturated) have been achieved. For defective anatase (synthesized at 110°C), the CV curves exhibit two distinct peaks that can be linked to the co-existence of two sites for proton intercalation. The proton can be intercalated either inside a vacancy or within the lattice. This behavior allows a promising working potential of -1.6V with a gravimetric capacity of 250 mAh.g-1 with a 90% of efficiency over 50 cycles. Finally, the relationship between structure and electrochemical properties will be discussed in this presentation with the objective of designing an efficient MnO2/TiO2 aqueous battery. REFERENCE: [1] Wu, X.; Hong, J. J.; Shin, W.; Ma, L.; Liu, T.; Bi, X.; Yuan, Y.; Qi, Y.; Surta, T. W.; Huang, W.; Neuefeind, J.; Wu, T.; Greaney, P. A.; Lu, J.; Ji, X. Nat. Energy 2019, 4 (2), 123–130 [2] Chimie, E. D.; Analytique, C.; Centre, D. P.; Kang, P. S. Sorbonne Université Design de Matériaux Lamellaires Par Chimie Douce Pour Batteries à Proton et Ion Multivalent. 2020. [3] Kang, S; Singh. A; Badot, J-c; Reeves, K; Durand-Vidal, Serge, Legein, C; Body, Monique, Dubrunfaut, O; Borkiewez, O; Tremblay, B; Laberty-Robert, C; Dambournet, D Chemistry of Materials 2020 32 (21), 9458-9469 Figure 1
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Palanisamy, Gowthami y Tae Hwan Oh. "TiO2 Containing Hybrid Composite Polymer Membranes for Vanadium Redox Flow Batteries". Polymers 14, n.º 8 (15 de abril de 2022): 1617. http://dx.doi.org/10.3390/polym14081617.

Texto completo
Resumen
In recent years, vanadium redox flow batteries (VRFB) have captured immense attraction in electrochemical energy storage systems due to their long cycle life, flexibility, high-energy efficiency, time, and reliability. In VRFB, polymer membranes play a significant role in transporting protons for current transmission and act as barriers between positive and negative electrodes/electrolytes. Commercial polymer membranes (such as Nafion) are the widely used IEM in VRFBs due to their outstanding chemical stability and proton conductivity. However, the membrane cost and increased vanadium ions permeability limit its commercial application. Therefore, various modified perfluorinated and non-perfluorinated membranes have been developed. This comprehensive review primarily focuses on recent developments of hybrid polymer composite membranes with inorganic TiO2 nanofillers for VRFB applications. Hence, various fabrications are performed in the membrane with TiO2 to alter their physicochemical properties for attaining perfect IEM. Additionally, embedding the -SO3H groups by sulfonation on the nanofiller surface enhances membrane proton conductivity and mechanical strength. Incorporating TiO2 and modified TiO2 (sTiO2, and organic silica modified TiO2) into Nafion and other non-perfluorinated membranes (sPEEK and sPI) has effectively influenced the polymer membrane properties for better VRFB performances. This review provides an overall spotlight on the impact of TiO2-based nanofillers in polymer matrix for VRFB applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Lee, Chi-Yuan, Chia-Hung Chen, Yun-Hsiu Chien y Zhi-Yu Huang. "A Proton Battery Stack Real-Time Monitor with a Flexible Six-in-One Microsensor". Membranes 12, n.º 8 (13 de agosto de 2022): 779. http://dx.doi.org/10.3390/membranes12080779.

Texto completo
Resumen
A proton battery is a hybrid battery produced by combining a hydrogen fuel cell and a battery system in an attempt to obtain the advantages of both systems. As the battery life of a single proton battery is not good, the proton battery stack is developed by connecting in parallel, which can greatly improve the battery life of proton batteries. In order to obtain important information about the proton battery stack in real time, a flexible six-in-one microsensor is embedded in the proton battery stack. This study has successfully developed a health diagnostic tool for a proton battery stack using micro-electro-mechanical systems (MEMS) technology. This study also focused on the innovatively developed hydrogen microsensor, and integrated the voltage, current, temperature, humidity, and flow microsensors, as previously developed by our laboratory, to complete the flexible six-in-one microsensor. Six important internal physical parameters were simultaneously measured during the entire operation of the proton battery stack. It also established a complete database and monitor system in real time to detect the internal health status of the proton cell stack and observe if there were problems, such as water accumulation, aging, or failure, in order to understand the changes and effects of the various physical quantities of long-term operation. The study found that the proton batteries exhibited significant differences in the hydrogen absorb rates and hydrogen release rates. The ceramic circuit board used in the original sensor is replaced by a flexible board to improve problems such as peeling and breaking.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ikezawa, Atsunori, Tadaaki Nishizawa, Yukinori Koyama y Hajime Arai. "Development of MoO3-Based Proton Batteries". ECS Meeting Abstracts MA2022-02, n.º 1 (9 de octubre de 2022): 17. http://dx.doi.org/10.1149/ma2022-02117mtgabs.

Texto completo
Resumen
Aqueous rocking chair batteries have attracted attention as highly safe and inexpensive secondary batteries. Lithium and sodium ions have mostly been used as the mobile ions, whereas proton systems with potentially the highest mobility have rarely been reported. Recently, research on proton batteries has been conducted using concentrated sulfuric acid solutions as the electrolyte that can assist high-rate performance.[1] Stability under concentrated acidic conditions is required for the electrode materials, as well as the capability of proton accommodation. MoO3 has been reported as a stable negative electrode material for aqueous proton batteries,[2] while few positive electrode materials are known except for bulky organic[3] and Prussian-blue materials[4]. For achieving high energy density and long life, oxide positive electrode materials are desirable. Here we propose the application of MoO3 as the positive electrode material by optimizing the operating composition range. The potential values shown below are all shown versus SHE (actually measured with Ag/AgCl). MoO3 showed a discharge profile at around 0.5 V with the maximum capacity of ca. 100 mAh g-1, as shown in the figure. This potential is sufficiently more positive than the redox potential of protonated MoO3 of around -0.3 V as the negative electrode. With the aid of operando X-ray diffraction analysis, it turned out that the discharge regions at 0.5 V and 0.4 V are respectively associated with a biphasic transition of MoO3/phase I (ca. 0 < x < 0.3 in H x MoO3) and a single-phase reaction of phase I (ca. 0.3 < x < 0.5 in H x MoO3). Deep discharging beyond this range results in the coexistence of phase I and phase III (ca. 0.5 < x < 1.5 in H x MoO3) and the proton extraction from phase III leads to the formation of phase II or phase IIa with its discharging potential of 0.0 V. Structural calculation based on the density function theory is employed to clarify the origin of this irreversible phase transition behavior. Different proton sites between these phases seem to be responsible. An aqueous proton battery with a 7 mol dm–3 sulfuric acid electrolyte was constructed with H-inserted MoO3 and MoO3as the negative and positive electrodes, respectively, and was successfully discharged and charged repeatedly, with the operating voltage of ca. 0.6 V, indicating the launch of aqueous proton battery composed of oxide active materials. Reference s : [1] J. Li, H. Yan, C. Xu, Y. Liu, X. Zhang, M. Xia, L. Zhang, J. Shu, Nano Energy, 89 (2021) 106400. [2] X. Wang, Y. Xie, K. Tang, C. Wang, C. Yan, Angew. Chem. Int. Ed., 57 (2018) 11569. [3] X. Wang, J. Zhou, W. Tang, Energy Storage Mater., 36 (2021) 1. [4] X. Wu, J. J. Hong, W. Shin, L. Ma, T. Liu, X. Bi, Y. Yuan, Y. Qi, T. W. Surta, W. Huang, J. Neuefeind, T. Wu, P. A. Greaney, J. Lu, X. Ji, Nat. Energy, 4 (2019) 123. Figure 1
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Han, Tianyuan, Ying Bi, Ming Song y Penghua Qian. "Review of SPEEK Amphoteric Proton Exchange Membranes in All Vanadium Flow Batteries". Academic Journal of Science and Technology 8, n.º 1 (21 de noviembre de 2023): 218–22. http://dx.doi.org/10.54097/ajst.v8i1.14315.

Texto completo
Resumen
Sulfonated polyether ether ketone (SPEEK) membranes have been widely used in the field of all vanadium flow batteries (VFRB) due to their simple structure, convenient preparation, good thermal and mechanical stability, low cost, and easy modification. However, its membrane performance largely depends on the degree of sulfonation. As the degree of sulfonation increases, the proton conductivity increases, but it also increases water uptake, leading to excessive swelling and vanadium ion penetration, thereby reducing the stability of the membrane and the performance of the battery. The introduction of alkaline functional groups can serve as proton acceptors to promote proton transport through the Grotthus mechanism, and on the other hand, they can form acid-base pairs with sulfonic acid groups. The resulting hydrogen bonds, acid-base interactions, ion bonds, and other interface interactions are beneficial for reducing the swelling rate of SPEEK membranes, and can also adjust the size of proton transport channels, constructing efficient proton transport channels that are both conducive to proton transport and can hinder the passage of vanadium ions, Improve the ion selectivity of membranes. Therefore, this article reviews the basic research and practical development status of SPEEK amphoteric membranes in VRFB, including the latest progress in various modification strategies. And evaluated the challenges and potential future research directions faced by the development of SPEEK membranes.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Proton batteries"

1

Toorabally, Milad. "Development of negative TiO2-based electrodes by soft chemistry for aqueous proton ions batteries". Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS496.

Texto completo
Resumen
Des batteries vertes qui sont sûres, fabriquées à partir de ressources facilement disponibles et éthiquement sourcées, rentables et faciles à fabriquer sont nécessaires. La technologie lithium-ion, qui utilise des matériaux à base de Li et des solvants inflammables toxiques, ne répond pas actuellement à tous ces critères. Dans cette optique, nous proposons une solution complémentaire aux batteries Li-ion sous la forme d'une batterie proton-ion aqueuse. Les principaux défis posés par les batteries aqueuses proviennent de leur faible densité énergétique, dû à la fenêtre de stabilité électrochimique restreinte de l'eau. Cette limitation réduit le champ des candidats capables d'intercaler des protons sans déclencher des réactions parasites telles que la réaction d'évolution de l'hydrogène (HER). Les matériaux TiO2 présentent une option intéressante pour être utilisés comme électrode négative pour l'insertion de protons. La structure chimique synthétisée en condition solvothermale a été modifiée pour obtenir trois composés distincts : un échantillon titanate de type lépidocrocite amorphe disposé en feuillet, qui a été optimisé par la suite avec des ions zinc chimiquement incorporé dans son interfeuillet, un anatase avec des défauts cationiques et un anatase stœchiométrique. L'analyse électrochimique des échantillons de titanate en feuillet optimisé au zinc et d'anatase défectueux, et leur intégration en tant qu'électrodes négatives dans des conditions de cellule complète, montre des caractéristiques prometteuses avec notamment, une fenêtre de potentiel étendue et une capacité réversible de protons accrue. Ces résultats ont été corrélés à la caractérisation des matériaux et à l'effet sur le transport des protons
Green batteries that are safe, made of readily available and ethically sourced resources, cost-effective and easy to manufacture are needed. Lithium-ion technology, which uses Li-based materials and toxic flammable solvents, does not currently meet all of these criteria. With this in mind, we propose a complementary solution to Li-ion batteries in the form of an aqueous proton-ion battery. The primary challenges posed by aqueous batteries stem from their low energy density, which is the result of the restricted electrochemical stability window of water. This limitation narrows the field of candidates capable of intercalating protons without triggering parasitic reactions such as the hydrogen evolution reaction (HER). TiO2 materials present an intriguing option for use as a negative electrode for proton insertion. The chemical structure synthesized in solvothermal condition has been modified to achieve three distinct compounds: a layered, amorphous lepidocrocite type titanate sample further optimized with zinc ions chemically incorporated into its interlayer, a cationic defective anatase, and a stoichiometric anatase. The electrochemical analysis of the zinc-optimized layered titanate and defective anatase samples, and their integration as negative electrodes in full-cell conditions, demonstrates promising characteristics with notably, an extended potential window and heightened reversible proton capacity. These results were correlated to the materials characterization and the effect on proton transport
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Xu, Zhi. "Investigations on Molecular Sieve Zeolite Membranes as Proton-Selective Ion Separators for Redox Flow Batteries". University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1428049733.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lui, Wan-yin y 呂韻{21394e}. "A study on the performance of proton-exchange-membrane fuel cells and solar electrolysis for hydrogen production". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B26662425.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Vijayakumar, V. "Preparation, characterization and application of proton, lithium and zinc-ion conducting polymer electrolytes for supercapacitors, lithium- and zinc-metal batteries". Thesis(Ph.D.), CSIR-National Chemical Laboratory, 2021. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/5972.

Texto completo
Resumen
The use of liquid electrolytes in energy storage devices are associated with several constraints pertaining to safety. Polymer electrolytes are suitable candidates to overcome several problems associated with free-flowing liquid electrolytes. The current thesis deals with the development of proton, lithium, and zinc conducting gel polymer electrolytes for electrochemical energy storage devices such as supercapacitors, lithium-metal batteries, and zinc-metal batteries. Special emphasis is given to the improvement of electrode|electrolyte interface in polymer electrolyte-based energy storage devices by the ultraviolet-light-induced in situ processing strategy. Ultimately, the prospects of employing polymer electrolytes as an alternative to liquid electrolytes in energy storage devices is revisited in this dissertation through four dedicated working chapters.
University Grants Commissions (UGC), India CSIR, India
AcSIR
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

SENNA, ROQUE M. de. "Desenvolvimento e demonstração de funcionamento de um sistema híbrido de geração de energia elétrica, com tecnologia nacional, composto por módulo de células a combustível tipo PEMFC e acumulador chumbo ácido". reponame:Repositório Institucional do IPEN, 2012. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10121.

Texto completo
Resumen
Made available in DSpace on 2014-10-09T12:35:00Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T13:59:32Z (GMT). No. of bitstreams: 0
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Karo, Jaanus. "The Rôle of Side-Chains in Polymer Electrolytes for Batteries and Fuel Cells". Doctoral thesis, Uppsala universitet, Strukturkemi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-100738.

Texto completo
Resumen
The subject of this thesis relates to the design of new polymer electrolytes for battery and fuel cell applications. Classical Molecular Dynamics (MD) modelling studies are reported of the nano-structure and the local structure and dynamics for two types of polymer electrolyte host: poly(ethylene oxide) (PEO) for lithium batteries and perfluorosulfonic acid (PFSA) for polymer-based fuel cells. Both polymers have been modified by side-chain substitution, and the effect of this on charge-carrier transport has been investigated. The PEO system contains a 89-343 EO-unit backbone with 3-15 EO-unit side-chains, separated by 5-50 EO backbone units, for LiPF6 salt concentrations corresponding to Li:EO ratios of 1:10 and 1:30; the PFSA systems correspond to commercial Nafion®, Hyflon® (Dow®) and Aciplex® fuel-cell membranes, where the major differences again lie in the side-chain lengths. The PEO mobility is clearly enhanced by the introduction of side-chains, but is decreased on insertion of Li salts; mobilities differ by a factor of 2-3. At the higher Li concentration, many short side-chains (3-5 EO-units) give the highest ion mobility, while the mobility was greatest for side-chain lengths of 7-9 EO units at the lower concentration. A picture emerges of optimal Li+-ion mobility correlating with an optimal number of Li+ ions in the vicinity of mobile polymer segments, yet not involved in significant cross-linkages within the polymer host. Mobility in the PFSA-systems is promoted by higher water content. The influence of different side-chain lengths on local structure was minor, with Hyflon® displaying a somewhat lower degree of phase separation than Nafion®. Furthermore, the velocities of the water molecules and hydronium ions increase steadily from the polymer backbone/water interface towards the centre of the proton-conducting water channels. Because of its shorter side-chain length, the number of hydronium ions in the water channels is ~50% higher in Hyflon® than in Nafion® beyond the sulphonate end-groups; their hydronium-ion velocities are also ~10% higher. MD simulation has thus been shown to be a valuable tool to achieve better understanding of how to promote charge-carrier transport in polymer electrolyte hosts. Side-chains are shown to play a fundamental rôle in promoting local dynamics and influencing the nano-structure of these materials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Zhou, Daming. "Modeling and Multi-Dimensional Analysis of a Proton Exchange Membrane Fuel Cell". Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCA011/document.

Texto completo
Resumen
Un des freins à la commercialisation de masse de la pile à combustible et notamment de la technologie à membrane échangeuse de proton vient de sa faible durée de vie due à la difficulté de contrôler le système sous certaines conditions. Pour pallier à ce problème, l’élaboration d’un modèle mathématique précis de la pile à combustible à membrane échangeuse de protons permettant d’observer les variables internes et l'état de la pile à combustible au cours de son fonctionnement permettrait le développement de la stratégie de contrôle du système.Cette thèse propose d’élaborer un modèle dynamique multi-physique complet pour la pile à combustible à membrane échangeuse de protons. Le modèle proposé couvre les domaines multi-physiques pour les caractéristiques électriques, fluidiques et thermiques. Dans ces deux derniers domaines, les phénomènes transitoires sont notamment pris en compte dans le modèle proposé, tels que les comportements dynamiques de la teneur en eau de la membrane de la pile et la température. Par conséquent, ce modèle peut être utilisé pour analyser les effets de couplage des variables dynamiques entre différents domaines physiques.Grace à ce modèle ainsi définit, un second modèle multi-physique bidimensionnel plus détaillé est également présenté. Le modèle proposé couvre les domaines électriques et fluidiques avec une approche de modélisation 2-D innovante. Les distributions spatiales de quantité physique dans le domaine électrique peuvent ainsi être obtenues. Par conséquent, ce modèle 2-D PEMFC peut être utilisé pour étudier les influences des paramètres de modélisation sur la prédiction de performance multidimensionnelle locale. Une étude expérimentale est effectuée pour valider le modèle 2-D proposé avec une pile commerciale PEMFC Ballard NEXA de 1,2 kW.Dans un second chapitre, une analyse des phénomènes dynamiques est réalisée en fonction du modèle dynamique multidisciplinaire développé en s’appuyant sur la méthode RGA (gain relatif) pour diverses variables d'entrée de contrôle, afin d'analyser quantitativement les effets de couplage dans différents domaines physiques. L’étude s’intéresse entre autre aux interactions de la teneur en eau et de la température de la membrane. L'analyse de couplage présentée dans cette thèse peut aider les ingénieurs à concevoir et à optimiser les stratégies de contrôle des piles à combustible, en particulier pour la gestion de l'eau et de la chaleur dans les systèmes de piles à combustible.Une deuxième analyse portant sur la sensibilité aux paramètres de l'étude est effectuée sur la base du modèle multidisciplinaire bidimensionnel développé. Ces résultats d'analyse de sensibilité globale fournissent des informations utiles pour la compréhension de la dégradation, le réglage des paramètres et la simplification du modèle des piles à combustible.Dans un troisième temps, le modèle proposé se décline dans un algorithme de résolution mathématique en temps réel basé sur un algorithme de matrice tri diagonal efficace (TDMA). Les résultats expérimentaux démontrent les possibilités pratiques du modèle 2-D proposé pour le contrôle en temps réel avancé des systèmes de pile à combustible avec un temps de calcul de la boucle de contrôle de l'ordre de la milliseconde. Le temps d'exécution du modèle peut être quadruplé par rapport aux algorithme séquentiels présent dans la littérature; garantissant ainsi des décisions et des actions de contrôle rapide
Before mass commercialization of proton exchange membrane fuel cell, the research on the design of appropriate control strategies and auxiliaries need to be done for achieving proton exchange membrane fuel cell (PEMFC) optimal working modes. An accurate mathematical PEMFC model can be used to observe the internal variables and state of fuel cell during its operation, and could further greatly help the system control strategy development.A comprehensive multi-physical dynamic model for PEMFC is developed in chapter I. The proposed model covers multi-physical domains for electric, fluidic and thermal features. Particularly, the transient phenomena in both fluidic and thermal domain are simultaneously considered in the proposed model, such as the dynamic behaviors of fuel cell membrane water content and temperature. Therefore, this model can be used to analyze the coupling effects of dynamic variables among different physical domains.Based on the developed multi-physical PEMFC model, a full two-dimensional multi-physical model is further presented. The proposed model covers electrical and fluidic domains with an innovative 2-D modeling approach. In order to accurately describe the characteristics of reactant gas convection in the channels and diffusion through the gas diffusion layer, the gas pressure drop in the serpentine pipeline is comprehensively analyzed by fully taking the geometric form of flow field into consideration, such as the reactant gas pressure drop due to the pipeline sharp and U-bends. Based on the developed 2-D fluidic domain modeling results, spatial physical quantity distributions in electrical domain can be further obtained. Therefore, this 2-D PEMFC model can be use to study the influences of modeling parameters on the local multi-dimensional performance prediction. The simulation and experimental test are then performed to validate the proposed 2-D model with a commercial Ballard NEXA 1.2 kW PEMFC stack.In chapter II, analyses of dynamic phenomena step responses are conducted based on the developed multi-physical dynamic PEMFC model using the relative gain array (RGA) method for various control input variables, in order to quantitatively analyze the coupling effects in different physical domains, such as the interactions of membrane water content and temperature. Based on the calculated values of relative gain array, the proposed model can be considered as a fuel cell MIMO system, which could be divided into two independent control sub-systems by minimizing parameter coupling effects between each other. Due to the closely coupled parameters in the proposed first control sub-system, a decoupling control method is recommended to achieve optimized control results. The coupling analysis presented in this thesis can help engineers to design and optimize the fuel cell control strategies, especially for the water and thermal management in fuel cell systems
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Jacques, Céline. "Méthodes d'apprentissage automatique pour la transcription automatique de la batterie". Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS150.

Texto completo
Resumen
Cette thèse se concentre sur les méthodes d’apprentissage pour la transcription automatique de la batterie. Elles sont basées sur un algorithme de transcription utilisant une méthode de décomposition non-négative, la NMD. Cette thèse soulève deux principales problématiques : l’adaptation des méthodes au signal analysé et l’utilisation de l’apprentissage profond. La prise en compte des informations du signal analysé dans le modèle peut être réalisée par leur introduction durant les étapes de décomposition. Une première approche est de reformuler l’étape de décomposition dans un contexte probabiliste pour faciliter l’introduction d’informations a posteriori avec des méthodes comme la SI-PLCA et la NMD statistique. Une deuxième approche est d’implémenter directement dans la NMD une stratégie d’adaptation : l’application de filtres modelables aux motifs pour modéliser les conditions d’enregistrement ou l’adaptation des motifs appris directement au signal en appliquant de fortes contraintes pour conserver leur signification physique. La deuxième approche porte sur la sélection des segments de signaux à analyser. Il est préférable d’analyser les segments où au moins un événement percussif a lieu. Un détecteur d’onsets basé sur un réseau de neurones convolutif (CNN) est adapté pour détecter uniquement les onsets percussifs. Les résultats obtenus étant très intéressants, le détecteur est entraîné à ne détecter qu’un seul instrument permettant la réalisation de la transcription des trois principaux instruments de batterie avec trois CNN. Finalement, l’utilisation d’un CNN multi-sorties est étudiée pour transcrire la partie de batterie avec un seul réseau
This thesis focuses on learning methods for automatic transcription of the battery. They are based on a transcription algorithm using a non-negative decomposition method, NMD. This thesis raises two main issues: the adaptation of methods to the analyzed signal and the use of deep learning. Taking into account the information of the signal analyzed in the model can be achieved by their introduction during the decomposition steps. A first approach is to reformulate the decomposition step in a probabilistic context to facilitate the introduction of a posteriori information with methods such as SI-PLCA and statistical NMD. A second approach is to implement an adaptation strategy directly in the NMD: the application of modelable filters to the patterns to model the recording conditions or the adaptation of the learned patterns directly to the signal by applying strong constraints to preserve their physical meaning. The second approach concerns the selection of the signal segments to be analyzed. It is best to analyze segments where at least one percussive event occurs. An onset detector based on a convolutional neural network (CNN) is adapted to detect only percussive onsets. The results obtained being very interesting, the detector is trained to detect only one instrument allowing the transcription of the three main drum instruments with three CNNs. Finally, the use of a CNN multi-output is studied to transcribe the part of battery with a single network
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ling, Min. "Development of Green Electrode Fabrication Technologies for Low Cost and High Performance Lithium Ion Batteries". Thesis, Griffith University, 2015. http://hdl.handle.net/10072/365824.

Texto completo
Resumen
Rechargeable lithium ion batteries (LIBs) are playing a dominant role in powering enormous numbers of portable electronic products and modernizing our everyday life. In the past decade, intense investment, research and development have been devoted to improving the major components of LIBs such as active materials, separators and electrolytes to further the application of LIBs for high energy consumption devices. The currently available LIBs however, cannot meet all requirements primarily because of low electronic/ion conductivity of electrodes. Furthermore, cost, safety, and environmental issues continue to impede further development of LIBs. In particular, the traditional electrode fabrication process commonly involves the consumption of toxic organic solvents such us NMP. To address all these issues, this thesis attempts to develop green electrode fabrication technologies for low cost and high performance LIBs by selection and modification of low cost and sustainable natural binders and removing the adoption of the toxic organic solvents. To convert the traditional LIB electrode production process from an organic solvent-based process into a green and water-based production technology, the water-soluble polymer Eastman AQTM 55S (EAQ) was chosen as a binder for graphite anodes in LIBs.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Environment.
Science, Environment, Engineering and Technology
Full Text
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Plylahan, Nareerat. "Electrodeposition of Polymer Electrolytes into Titania Nanotubes as Negative Electrode for 3D Li-ion Microbatteries". Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4049.

Texto completo
Resumen
Des nanotubes de dioxyde de titane (TiO2nts) sont étudiés comme électrodes négatives potentielles pour des microbatteries Li-ion 3D. Ces TiO2nts lisses et hautement auto-organisés sont élaborés par anodisation du Ti dans des électrolytes organiques à base de glycérol ou d'éthylène glycol contenant des ions fluor et de l'eau en faible quantité. Les structures présentant un diamètre de 100 nm et une longueur variant de 1,5 à 14 µm sont particulièrement appropriés pour l'application visée. Les TiO2nts ont été tapissés de manière conforme par un électrolyte polymère (PMA-PEG) comportant un sel de lithium (LiTFSI) grâce à la technique d'électropolymérisation. Les études morphologiques menées par SEM et TEM ont montré que les nanotubes sont entièrement recouverts d'un film mince polymère de 10 nm d'épaisseur, ce qui permet de préserver la structure 3D de l'électrode. Les tests électrochimiques portant sur les nanotubes seuls ainsi que sur les TiO2nts tapissés d'électrolyte polymère ont été effectués en demi-cellule et en cellule complète en utilisant un électrolyte polymère à base de MA-PEG contenant du LiTFSI. En demi-cellule, les TiO2nts de 1,5 µm de long delivrent une capacité surfacique de 22 µAh cm-2 relativement stable sur 100 cycles. La performance de la demi-cellule est améliorée de 45% à une cinétique de 1C lorsque les TiO2nts sont tapissés de manière conforme par un electrolyte polymère (PMA-PEG). Cet effet résulte d'un meilleur transport de charges lié à l'augmentation de la surface de contact entre l'électrode et l'électrolyte
Titania nanotubes (TiO2nts) as potential negative electrode for 3D lithium-ion microbatteries have been reported. Smooth and highly-organized TiO2nts are fabricated by electrochemical anodization of Ti foil in glycerol or ethylene glycol electrolyte containing fluoride ions and small amount of water. As-formed TiO2nts shows the open tube diameter of 100 nm and the length from 1.5 to 14 µm which are suitable for the fabrication of the 3D microcbatteries. The deposition of PMA-PEG polymer electrolyte carrying LiTFSI salt into TiO2nts has been achieved by the electropolymerization reaction. The morphology studies by SEM and TEM reveal that the nanotubes are conformally coated with 10 nm of the polymer layer at the inner and outer walls from the bottom to the top without closing the tube opening. 1H NMR and SEC show that the electropolymerization leads to PMA-PEG that mainly consists of trimers. XPS confirms the presence of LiTFSI salt in the oligomers.The electrochemical studies of the as-formed TiO2nts and polymer-coated TiO2nts have been performed in the half-cells and full cells using MA-PEG gel electrolyte containing LiTFSI in Whatman paper as separator. The half-cell of TiO2nts (1.5 µm long) delivers a stable capacity of 22 µAh cm-2 over 100 cycles. The performance of the half-cell is improved by 45% at 1C when TiO2nts are conformally coated with the polymer electrolyte. The better performance results from the increased contact area between electrode and electrolyte, thereby improving the charge transport
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Proton batteries"

1

Curtis, Henry B. Performance of GaAs and silicon concentrator cells under 37 MeV proton irradiation. [Washington, DC]: National Aeronautics and Space Administration, 1988.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Curtis, Henry B. Performance of GaAs and silicon concentrator cells under 37 MeV proton irradiation. [Washington, DC]: National Aeronautics and Space Administration, 1988.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Thounthong, Phatiphat. A PEM fuel cell power source for electric vehicle applications. New York: Nova Science, 2008.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Maj, Dorota. Modyfikujący wpływ roślinnych dodatków paszowych na użytkowość mięsną i ekspresję wybranych genów u królików w zależności od wieku i płci. Publishing House of the University of Agriculture in Krakow, 2017. http://dx.doi.org/10.15576/978-83-66602-29-8.

Texto completo
Resumen
The aim of the study was to determine the effect of feed additives (algae, soybean, and sunflower oil) used in the rabbit feed on: growth indices and slaughter traits, pH, colour, texture, chemical composition, fatty acid profile and oxidative stability (TBARS) of the meat as well as FTO and FABP4 genes expression in the meat’s intramuscular fat (m. longissimus lumborum), depending on the age and sex. The experimental material consisted of Termond White rabbits (n = 160, 80 females and 80 males). Animals were weaned on the 35th day of life, and housed in metal cages arranged in batteries (4 rabbits of the same sex in a cage). From weaning to 12 or 18 weeks of age, the rabbits were fed pellets ad libitum. Animals in the control group (C) received non-supplemented pellets throughout the experiment. In the other groups, the pellet contained 1% algae (A), 3% sunflower oil (OS), and 3% soybean oil(SO).The experimental diets were formulated to have similar protein and energy content. Diets were balanced by lowering the proportion of other feed components. The total share of all components remained at 100%. The results indicate that 3% vegetable oils (soybean or sunflower) supplementation of diets for growing rabbits leads to an increase of body weight and improvement of some of the slaughter traits, while 1% addition of algae to the feed causes deterioration of body weight and slaughter traits. The effect of oil additive depends on the animals’ age. Supplementation of the rabbits’ diet with algae (1%) or sunflower and soybean oils (3%) led to an increase in the dressing percentage of rabbits slaughtered at 18 weeks of age (approx. 3%), but had no effect on the dressing percentage of rabbits slaughtered at 12 weeks of age. Feeding pellets with either 3% vegetable oils or 1% algae additive to the rabbits did not significantly change the chemical composition of the meat. Protein content increased and intramuscular fat content decreased with age, while ash and water content were similar. The feed additives significantly differentiated meat acidity without deteriorating meat quality. Diet modification has not affected negatively meat colour. 24 h after the slaughter, the colour of rabbit meat was similar across the studied feeding groups. Correlation between diet and rabbits’ age was found. Meat texture (hardness, springiness and chewiness) of all rabbit groups slaughtered at 12 weeks of age was similar, and the shear for cewas greater in rabbits fed pellets with algae and soybean oil. At 18 weeks of age, rabbit meat from experimental groups had lower hardness and chewiness, compared to meat of the animals from the control group. Meat shear force was higher in the control group, and from algae-supplemented group. The correlation between diet and age was also found. The use of 3% vegetable oils or 1% algae as feed additives significantly reduced meat oxidative stability. Soybean or sunflower oil (3%) usedas feed additives favourably modified the fatty acid composition of intramuscular fat. Polyunsaturated fatty acids (PUFA) content was increased, including linoleic acid, and PUFA/MUFA ratio was improved. The content of these acids decreased with age. The use of algae (1%) as a feed additive resulted in positive effect on the increase of n-3 fatty acid content (EPA and DHA) in meat intramuscular fat. Algae supplementation improved pro-health properties of meat, with low n-6/n-3 acid ratio (2.5), indicating that diet modification may affect the fatty acid composition of rabbit meat. The influence of diet and age on FTO and FABP4 gene expression in meat intramuscular fat (m. longissimus lumborum) was found. FTO and FABP4 gene expression increased with age and was the highest in the group of rabbits with 1% algae supplementation in the diet. The effect of rabbits’ gender on growth, slaughter traits, meat quality and gene expression in rabbits was not observed. In conclusion, the use of natural feed additives, such as sunflower, soybean oil or algae, can improve the nutritional value of rabbit meat, without changing its chemical or physical properties, and therefore the meat can serve as functional food, with properties beneficial to human health. The results obtained in this study also indicate that the expression of FTO and FABP4 genes in rabbit muscles is regulated by dietary factors and age, which, in addition to cognitive significance, has practical implications for improving technological and dietary quality of rabbit meat.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Proton batteries"

1

Clearfield, A., M. A. Subramanian, B. D. Robert y R. Subramanian. "Proton and Lithium Ion Conductors Based Upon the AM 2 IV (PO4)3 Type Structure". En Solid State Batteries, 445–48. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5167-9_30.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kim, Sangcheol, Kirt A. Page y Christopher L. Soles. "Structure and Properties of Proton Exchange Membrane Fuel Cells at Interfaces". En Polymers for Energy Storage and Delivery: Polyelectrolytes for Batteries and Fuel Cells, 267–81. Washington, DC: American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1096.ch016.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Guitton, J., C. Poinsignon y J. Y. Sanchez. "All solid-state protonic batteries". En Proton Conductors, 539–50. Cambridge University Press, 1992. http://dx.doi.org/10.1017/cbo9780511524806.038.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Chandra, Suresh. "SOLID STATE PROTON CONDUCTORS AND THEIR APPLICATIONS". En Handbook of Solid State Batteries and Capacitors, 579–600. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812831828_0025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Sarangapani, S., J. A. Kosek y A. B. LaConti. "PROTON CONDUCTING ELECTROCHEMICAL CAPACITORS WITH SOLID POLYMER ELECTROLYTE". En Handbook of Solid State Batteries and Capacitors, 601–14. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812831828_0026.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Panda, Debabrata y Krunal M. Gangawane. "Next-Generation Energy Storage and Optoelectronic Nanodevices". En Current and Future Developments in Nanomaterials and Carbon Nanotubes, 223–39. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815050714122030016.

Texto completo
Resumen
Among the variety of nanostructures that have been explored as a favorable material for the application of higher energy storage devices as supercapacitors, catalysts in high-performance batteries, proton exchange membranes in fuel cells, optoelectronic devices, and so on, 2D &amp; 3D nanostructure of graphene-based derivatives, metal oxides and dichalcogenides have received the most potential attention for building high-performance nano-devices due to their extraordinary properties. Over the past decade, several efforts have been implemented to design, develop, and evaluate electrodes' structures for enhanced energy storage devices. A significant modification has achieved the remarkable performance of these synthesized devices in terms of energy storage capacity, conversion efficiency, and the reliability of the devices to meet practical applications' demands. Light-emitting diode (LED) in quantum well or quantum dots is considered an important aspect for an enhanced optoelectronic device. This current study outlines different 3D nanostructures for next generation energy storage devices. It provides a systematic summary of the advantages of 3D nanostructures in perspective to next-generation energy storage devices, photocatalytic devices, solar cells, a counter electrode for metal-ion batteries, and supercapacitors, optoelectronic nano-devices.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Nayak, Ratikanta, Bentham Science Publisher Harilal y Prakash Chandra Ghosh. "Polymer Nanocomposite Membrane for Fuel cell Applications". En Current and Future Developments in Nanomaterials and Carbon Nanotubes, 176–89. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815050714122030013.

Texto completo
Resumen
Polymer nanocomposite is a new kind of material that offers to substitute traditionally filled polymers. The nanomaterial polymer matrix inter-phase area increases drastically due to the inherent high surface-to-volume ratio resulting in remarkably enhanced properties compared to the pristine polymers or their conventional counterpart filled nanocomposites. Nanocomposites have several novel properties such as nonlinear optical properties, electronic conductivity and luminescence. Therefore, their use has been projected in many areas like chemical sensors, polymer electrolyte membrane fuel cell (PEMFCs), electroluminescent devices, batteries, electrocatalysis, smart windows and memory devices. PEMFCs embody a potential candidate for electrochemical energy generation in the twenty-first century due to their better efficiency and environmentally friendly nature. Proton exchange/Polymer electrolyte membrane (PEM) plays a vital role in the PEMFCs. Currently, PEM like Nafion and Flemions are widely used in PEMFC, which have certain drawbacks such as fuel cross-over through the membrane, low operating temperature, and high cost. The researchers from several laboratories across the globe have put their extreme effort into preparing a novel polymer electrolyte membrane with high proton conductivity, better long-term stability, improved thermal stability, high peak power density (PPD), and less fuel crossover with minimum cost. The advent of nanotechnology has brought a new scope to this research area. The hybrid (organic polymer with inorganic nanoparticle) nanocomposite membrane has developed into an exciting alternative to the conventional polymer membrane applications. It provides an exclusive blend of inorganic and organic properties and helps to overcome the drawbacks of align="center"pristine polymer membranes. In this book chapter, we have focused on different nanomaterials and their effect is analyzed in polymer electrolyte nanocomposite membranes for PEMFC applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Kavitha, E. "Advanced Functional Membranes for Energy Applications". En Advanced Functional Membranes, 237–66. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901816-8.

Texto completo
Resumen
Global warming has become a serious threat to the environment as well as human life. The application of renewable and green energy sources has been emphasized in recent years to overcome the energy demand and save the environment. As a competent alternative to renewable energy sources, membrane-based energy generation has attracted the attention of researchers. In the past few decades, the application of advanced functional membranes in green energy production has gained importance. The application of polyelectrolyte membranes in fuel cells has become an emerging technology due to high proton conductivity, excellent thermal, chemical stability, and mechanical strength. Pressure retarded osmosis is also one of the membrane-based energy generation techniques which have been upgraded with significant developments. The various polymeric membranes, both inorganic and organic, have been employed in the energy production processes. In the past few years, the application of biopolymeric membranes made up of chitosan blends has shown excellent progress. The storage of energy also plays an equivalent role in energy production. The application of membranes has a vital role in energy storage batteries. This chapter deals with all the advanced functional membranes for energy production and storage.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Jollie, David. "Fuel cells". En Energy... beyond oil. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780199209965.003.0013.

Texto completo
Resumen
The vision of a world without oil or other fossil fuels is both surreal and at the same time seductive as a solution to current concerns over climate change and oil availability. It is also, to some extents, an irrelevant one for fuel cells. Rather than being an energy source they provide a mechanism for transforming one form of energy (chemical) to another (typically electricity or heat). In this way, they resemble batteries, internal combustion engines, and even steam engines. The key to their value is really their efficiency: they are able to carry out this transformation cleanly and efficiently. Fuel cells are not yet fully developed. The technology and the fuel cell effect were discovered in 1839 by, depending on your point of view, William Grove or Christian Schoenbein (Sanstede et al., 2003). For a long time after this, the technology was essentially dormant until the 1940s when Francis Bacon started working on it and the 1950s when Allis-Chalmers built the first application of the technology (a fuel cell powered tractor). Research and development accelerated when fuel cells were chosen as power sources for space missions in the 1960s and the 1970s oil price shocks increased interest in other technologies, but the real impetus came in the 1990s when DaimlerChrysler examined the proton exchange membrane fuel cell and decided that it could be used to power a vehicle. Considerable effort is still to be expended on improving fuel cell technology in terms of cost and performance. Ancillary questions like the best method of fuelling and of carrying fuel still remain to be solved. However, we have begun to see fuel cells entering the commercial marketplace and the coming years and decades should see this accelerate. A simple definition of a fuel cell might be ‘a device that reacts a fuel and an oxidant, without combustion, producing heat and electricity’. The best-known case, that of a proton exchange membrane (PEM) fuel cell (PEMFC), is illustrated in Fig. 11.1. In a PEM fuel cell, the fuel is hydrogen, the oxidant is oxygen and the only chemical product is water, as described in reaction (1): . . . 2H2 + O2 ⇒ 2H2O + heat + electricity (11.1) . . .
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Lu, Fei y Yanan Gao. "Covalent Organic Frameworks for Ion Conduction". En Covalent Organic Frameworks [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108291.

Texto completo
Resumen
Covalent organic frameworks (COFs) are an emerging class of crystalline porous materials constructed by the precise reticulation of organic building blocks through dynamic covalent bonds. Due to their facile preparation, easy modulation and functionalization, COFs have been considered as a powerful platform for engineering molecular devices in various fields, such as catalysis, energy storage and conversion, sensing, and bioengineering. Particularly, the highly ordered pores in the backbones with controlled pore size, topology, and interface property provide ideal pathways for the long-term ion conduction. Herein, we summarized the latest progress of COFs as solid ion conductors in energy devices, especially lithium-based batteries and fuel cells. The design strategies and performance in terms of transporting lithium ions, protons, and hydroxide anions are systematically illustrated. Finally, the current challenges and future research directions on COFs in energy devices are proposed, laying the groundwork for greater achievements for this emerging material.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Proton batteries"

1

Averbukh, M., D. Faiman y K. Batat. "Modeling of dynamic behavior of vanadium redox batteries (VRB) with contamination properties of proton exchange membrane". En 2012 IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI 2012). IEEE, 2012. http://dx.doi.org/10.1109/eeei.2012.6377034.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Banazwski, B. y R. K. Shah. "The Role of Fuel Cells for Consumer Electronic Products and Toys". En ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2003. http://dx.doi.org/10.1115/fuelcell2003-1712.

Texto completo
Resumen
Batteries have not kept pace with the advancing technology that they power, but they are used in everything from cell phones, laptop computers, and toys to consumer electronics. Compared to the devices that they power, batteries are relatively heavy, expensive per unit power they produce, last a relatively short time and recharging them takes hours. The solution to this less than desired means of a power source is fuel cells. Three fuel cells, also referred to as air breathers, considered are proton exchange membrane fuel cell (PEMFC), direct methanol fuel cells (DMFC), and direct formic acid fuel cells (DFAFC). We will discuss these fuel cells for micro and portable applications within the power range of 0.5 to 20 W for potential replacement of batteries. The reason for developing such fuel cells is to harness the power stored in the high energy density fuels, which provides more power and longer run times for the same packaging volume as batteries. The advantages of each type of fuel cell over batteries, their unique characteristics, technical drawbacks, current and future consumer products, and commercial issues will be outlined in this paper. A growing mobile society and consumer demands will drive the development of fuel cell technology forward as batteries reach their limit.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Zhang, Yan y Biao Zhou. "Power Management of a Portable Proton Exchange Membrane Fuel Cell-Battery Power System". En ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33106.

Texto completo
Resumen
A portable Proton Exchange Membrane (PEM) fuel cell-battery power system with hydrogen as fuel has higher power density than conventional batteries and is one of the promising environment-friendly small-scale alternative energy sources. Power management system, as the major control system in the portable PEM fuel cell-battery power system, directly controls the fuel cell stack sub-system, battery charging sub-system and power distribution control sub-system. How to design the power management system is one of the critical issues in optimizing the power system performance, efficiency and components life time. In this study, a set of portable PEM fuel cell-battery system model is introduced. A power management approach with an emergency shutdown function is presented, which not only balances the power distribution between fuel cell and battery at prescribed load condition, but also controls the battery charging cycles to extend the battery life. The simulation results shows the proposed power management approach can effectively control the system performance as expected.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Mittal, Vikram y Miriam Figueroa-Santos. "Modeling and Analysis of Fully Electric and Hydrogen-Powered Bradley Fighting Vehicles". En WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0119.

Texto completo
Resumen
<div class="section abstract"><div class="htmlview paragraph">As the U.S. Army moves to electrify portions of its vehicle fleet, it is worth considering the heavier combat vehicles. However, the high power demand of these vehicles coupled with the relatively low energy density of modern batteries result in electric vehicles with limited range and functionality. Hydrogen-based fuel cells are an alternative to batteries that can provide many of the same environmental and logistical benefits associated with electrification. This study models the energy consumption for two variants of the M2A4 Bradley Fighting Vehicle (BFV). The first variant is powered by a hydrogen-based Proton Exchange Membrane Fuel Cell; the second variant is powered through lithium-ion batteries. These models account for vehicle weight, accelerative forces, drag, road grade, tractive losses, and ancillary equipment and are compared against a conventional M2A4 BFV. The analysis also considers the weight and volume restrictions for the powertrain especially as they relate to the storage of hydrogen and batteries. In doing so, the range of the vehicle with each powertrain can be determined. Furthermore, the study looks at the logistical needs associated with such vehicles. In particular, it approximates the quantity of fuel, water, and solar panels required to produce enough electricity to recharge batteries or electrolyze water for hydrogen production. The analysis then evaluates the trade-offs between vehicle range and logistical footprint associated with the different powertrains. The study then concludes with a discussion on the technical challenges associated with each powertrain.</div></div>
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

McCurdy, Kerri, Arturo Vasquez y Karla Bradley. "Development of PEMFC Systems for Space Power Applications". En ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2003. http://dx.doi.org/10.1115/fuelcell2003-1726.

Texto completo
Resumen
Space power applications historically include fuel cells due to the high energy storage density of hydrogen and oxygen compared to batteries. Fuel cells are continuously under development to incorporate latest technology and focus on specific details of fuel cells systems relevant to harsh space transportation environments. The National Aeronautics and Space Administration is developing proton exchange membrane fuel cells systems for space power applications because of the potential for longer life, reduction in cost, and increase in safety compared to current alkaline fuel cell technology. Space fuel cell applications utilize oxygen instead of air, which introduces better performance but greater hazards. Circulation of reactants is beneficial for these systems to aid in removal of product water from the fuel cell stack and to humidify reactant fluid streams. Current space fuel cell prototype systems use a simple but effective pump for reactant recirculation known as a gas ejector. A gas ejector uses a high-pressure primary gas supply to produce suction to a secondary fluid at a lower pressure. A gas and water separator is then necessary to remove the fuel cell product water from the unutilized recirculated oxygen. The National Aeronautics and Space Administration is analyzing and testing several different means to separate the oxygen gas and water in both microgravity and increased gravity conditions. This paper addresses specific components and design concerns for proton exchange membrane fuel cell systems for space power applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Pozin, A., M. Averbukh y S. Sukoriansky. "Power Efficiency Optimization of Vanadium Redox Batteries Based on Experimental Analysis of Electrolyte Flow Through Carbon Felt of Electrodes". En ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36295.

Texto completo
Resumen
The Vanadium Redox Flow Battery (VRB) represents a significant opportunity for future Energy Storage Systems (ESS), which will be the crucial element in Renewable Power Plants. Main expectations of VRB relate to its prolonged service life, high-energy efficiency, outstanding dynamic response and flexible controllability during charge/discharge processes. The typical cell of VRB consists of two compartments (positive and negative) divided by a proton exchange membrane (PEM). The carbon electrodes in each compartment provide the electrochemical reduction-oxidation reactions in electrolyte. Carbon felt material as a rule is chosen for electrodes development due to its ability to provide intensive electrochemical reaction owing enlarged external surface and thus a sufficient current (power). The electrolyte on the base of sulfuric acid includes two pairs of vanadium ions with valences: (2+, 3+) in the negative compartment and (4+, 5+) in the positive one. The main volume of electrolyte is stored in two separate tanks and is pumped through both cell’s compartments. There are two main reasons for electrolyte pumping. The first one is the restricted solubility of active vanadium species in sulfuric acid that leads to have an enlarged amount of electrolyte volume, which may be located outside of the cells only. The second reason is the need to decrease concentration polarization effects on the electrode surface. Electric current creates the layer of inactive ions on the electrode surface that increases internal electrical resistance, reduces electromotive force and the battery power. Electrolyte circulation eliminates the effect of polarization but causes hydrodynamic losses. They may be diminished by the optimization of electrolyte flow rate based on correct description of hydrodynamic properties of a carbon felt and on accurate depiction of battery electrical losses. The present research proposes a novel approach to optimization of electrolyte pumping with the purpose to obtain maximum VRB efficiency.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Gosavi, Abhijit, Suzanna Long, Scott Grasman y Sean Schmidt. "Impact of Using PEM Forklifts on Manufacturing Layouts". En ASME/ISCIE 2012 International Symposium on Flexible Automation. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/isfa2012-7116.

Texto completo
Resumen
The popularity of forklifts that use fuel cells based on proton exchange membranes (PEMs) has steadily increased with time in manufacturing industries and distribution centers. Because they potentially reduce our dependence on fossil fuels that emit carbon dioxide while generating energy, they have certain environmental benefits in comparison to forklifts driven by lead-acid batteries that are typically charged using regular sources of energy. In this paper, we study the impact of using PEM forklifts on material-handling costs and lead times, which are commonly used in measuring the cost-effectiveness of a manufacturing system’s layout. We report some initial findings in this paper. In general, we find that layouts designed for PEM forklifts tend to have lower material-handling costs, improved closeness ratings, and higher area utilization, while the shop-floor lead times tend to be shorter, leading to lower inventory and higher flexibility in responding to fluctuations in customer demand. Overall, PEM forklifts may hence improve the health of the supply chain of the product by making it more flexible and cost-effective.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Zafar, Sayem y Mohamed Gadalla. "Evaluation of an Integrated Fuel Cell-PV Panel System as a Hybrid UAV Powerplant". En ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87708.

Texto completo
Resumen
A model study was conducted to investigate the integration of a hybrid, fuel cell-PV panel power system for a small unmanned aerial vehicle (UAV). A hybrid power system is proposed as a substitute to the existing batteries to enhance the endurance of such systems. A UAV with wing area equivalent solar panel and 900Ah proton exchange membrane fuel cell, with stored pressurised hydrogen, is modeled. Maximum take-off weight of 100 N was used to make the UAV man-portable. The flight performance was simulated using available and calculated data. Aerodynamic analysis was conducted and the wing and tail geometries were determined to house the PV panels. The corresponding required power was then established from the drag and weight values. Measurements were made for the maximum required power for endurance. The results showed favorable increase in a small UAV’s flight performance when an integrated hybrid fuel cell-PV panel system is used. An endurance increment of 2384 seconds was achieved using a hybrid, fuel cell-PV panel, power system when compared to fuel cell only power system. The research proved the effectiveness of using fuel cell-PV panel hybrid system as a small UAV power plant. It also highlighted the effectiveness of using renewable sources to increase the endurance of a small UAV.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Kramer, Justin, Brenton Greska y Anjaneyulu Krothapalli. "Construction and Implementation of the Off-Grid Zero Emissions Building". En ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90387.

Texto completo
Resumen
This paper deals with the construction and implementation of the Off-Grid Zero Emissions Building (OGZEB), a project undertaken by the Energy Sustainability Center (ESC), formally the Sustainable Energy Science and Engineering Center (SESEC), at the Florida State University (FSU). The project involves the design, construction and operation of a completely solar-powered building that achieves LEED-NC (Leadership in Energy and Environment Design-New Construction) platinum certification. The 1064 square foot building is partitioned such that 800 square feet is a two bedroom, graduate student style flat with the remaining 264 square feet serving as office space. This arrangement allows the building to serve as an energy efficient model for campus designers in student living and office space. The building also serves as a prototype for developing and implementing cutting edge, alternative energy technologies in both residential and commercial settings. For example, hydrogen is used extensively in meeting the energy needs of the OGZEB. In lieu of high efficiency batteries, the excess electricity produced by the buildings photovoltaic (PV) panels is used to generate hydrogen via water electrolysis for long term energy storage. The hydrogen is stored on-site until needed for either generating electricity in a Proton Exchange Membrane (PEM) fuel cell stack or combusted in natural gas appliances that have been modified for hydrogen use. The use of hydrogen in modified natural gas appliances, such as an on-demand hot water heater and cook top, is unique to the OGZEB. This paper discusses the problems and solutions that arose during construction and includes detailed schematics of the OGZEBs energy system.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Kramer, Justin, Anjaneyulu Krothapalli y Brenton Greska. "The Off-Grid Zero Emission Building". En ASME 2007 Energy Sustainability Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/es2007-36170.

Texto completo
Resumen
This paper deals with the Off-Grid Zero Emissions Building (OGZEB), a project undertaken by the Sustainable Energy Science & Engineering Center (SESEC) at Florida State University (FSU). The project involves the design, construction and operation of a completely solar-powered building that achieves LEED-NC (Leadership in Energy and Environment Design-New Construction) platinum certification. The resulting 1000 square foot building will be partitioned such that 750 square feet will be a two bedroom, graduate student style flat with the remaining 250 square feet serving as office space. This arrangement will allow the building to serve as an energy efficient model for campus designers in student living and office space. The building will also serve as a prototype for developing and implementing cutting edge, alternative energy technologies in both residential and commercial settings. For example, hydrogen will be used extensively in meeting the energy needs of the OGZEB. In lieu of high efficiency batteries, the excess electricity produced by the building’s photovoltaic (PV) panels will be used to generate hydrogen via water electrolysis. The hydrogen will be stored on-site until needed for either generating electricity in a Proton Exchange Membrane (PEM) fuel cell stack or combusted in natural gas appliances that have been modified for hydrogen use. Although commercial variants already exist, a highly efficient water electrolysis device and innovative PEM fuel cell are currently under development at SESEC and both will be implemented into the OGZEB. The use of hydrogen in modified natural gas appliances, such as an on-demand hot water heater and cook top, is unique to the OGZEB.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Proton batteries"

1

Muelaner, Jody Emlyn. Electric Road Systems for Dynamic Charging. SAE International, marzo de 2022. http://dx.doi.org/10.4271/epr2022007.

Texto completo
Resumen
Electric road systems (ERS) enable dynamic charging—the most energy efficient and economical way to decarbonize road vehicles. ERS draw electrical power directly from the grid and enable vehicles with small batteries to operate without the need to stop for charging. The three main technologies (i.e., overhead catenary lines, road-bound conductive tracks, and inductive wireless systems in the road surface) are all technically proven; however, no highway system has been commercialized. Electric Road Systems for Dynamic Charging discusses the technical and economic advantages of dynamic charging and questions the current investment in battery-powered and hydrogen-fueled vehicles.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Hutchinson, Ronda. Temperature effects on sealed lead acid batteries and charging techniques to prolong cycle life. Office of Scientific and Technical Information (OSTI), junio de 2004. http://dx.doi.org/10.2172/975252.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía