Artículos de revistas sobre el tema "Proteins crowding"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Proteins crowding".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Zhou, Huan-Xiang. "Crowding Effects of Membrane Proteins". Journal of Physical Chemistry B 113, n.º 23 (11 de junio de 2009): 7995–8005. http://dx.doi.org/10.1021/jp8107446.
Texto completoRhoades, Elizabeth. "Proteins: Disorder, Folding, and Crowding". Biophysical Journal 117, n.º 1 (julio de 2019): 3–4. http://dx.doi.org/10.1016/j.bpj.2019.06.014.
Texto completoSnead, Wilton T., Carl C. Hayden, Avinash K. Gadok, Chi Zhao, Eileen M. Lafer, Padmini Rangamani y Jeanne C. Stachowiak. "Membrane fission by protein crowding". Proceedings of the National Academy of Sciences 114, n.º 16 (3 de abril de 2017): E3258—E3267. http://dx.doi.org/10.1073/pnas.1616199114.
Texto completoZosel, Franziska, Andrea Soranno, Karin J. Buholzer, Daniel Nettels y Benjamin Schuler. "Depletion interactions modulate the binding between disordered proteins in crowded environments". Proceedings of the National Academy of Sciences 117, n.º 24 (2 de junio de 2020): 13480–89. http://dx.doi.org/10.1073/pnas.1921617117.
Texto completoWei, Jiachen y Fan Song. "Association equilibria for proteins interacted with crowders of short-range attraction in crowded environment". International Journal of Modern Physics B 31, n.º 03 (23 de enero de 2017): 1750007. http://dx.doi.org/10.1142/s0217979217500072.
Texto completoHorton, Margaret R., Felix Höfling, Joachim O. Rädler y Thomas Franosch. "Development of anomalous diffusion among crowding proteins". Soft Matter 6, n.º 12 (2010): 2648. http://dx.doi.org/10.1039/b924149c.
Texto completoBanks, Daniel S. y Cécile Fradin. "Anomalous Diffusion of Proteins Due to Molecular Crowding". Biophysical Journal 89, n.º 5 (noviembre de 2005): 2960–71. http://dx.doi.org/10.1529/biophysj.104.051078.
Texto completoMakowski, Lee, Diane J. Rodi, Suneeta Mandava, David D. L. Minh, David B. Gore y Robert F. Fischetti. "Molecular Crowding Inhibits Intramolecular Breathing Motions in Proteins". Journal of Molecular Biology 375, n.º 2 (enero de 2008): 529–46. http://dx.doi.org/10.1016/j.jmb.2007.07.075.
Texto completoCandotti, Michela y Modesto Orozco. "The Differential Response of Proteins to Macromolecular Crowding". PLOS Computational Biology 12, n.º 7 (29 de julio de 2016): e1005040. http://dx.doi.org/10.1371/journal.pcbi.1005040.
Texto completoPerham, Michael, Loren Stagg y Pernilla Wittung-Stafshede. "Macromolecular crowding increases structural content of folded proteins". FEBS Letters 581, n.º 26 (1 de octubre de 2007): 5065–69. http://dx.doi.org/10.1016/j.febslet.2007.09.049.
Texto completoDias, Rita S. "Role of Protein Self-Association on DNA Condensation and Nucleoid Stability in a Bacterial Cell Model". Polymers 11, n.º 7 (29 de junio de 2019): 1102. http://dx.doi.org/10.3390/polym11071102.
Texto completoScott, Shane, Cynthia Shaheen, Brendon McGuinness, Kimberly Metera, Fedor Kouzine, David Levens, Craig J. Benham y Sabrina Leslie. "Single-molecule visualization of the effects of ionic strength and crowding on structure-mediated interactions in supercoiled DNA molecules". Nucleic Acids Research 47, n.º 12 (20 de mayo de 2019): 6360–68. http://dx.doi.org/10.1093/nar/gkz408.
Texto completoChebotareva, Natalia A., Svetlana G. Roman, Vera A. Borzova, Tatiana B. Eronina, Valeriya V. Mikhaylova y Boris I. Kurganov. "Chaperone-Like Activity of HSPB5: The Effects of Quaternary Structure Dynamics and Crowding". International Journal of Molecular Sciences 21, n.º 14 (13 de julio de 2020): 4940. http://dx.doi.org/10.3390/ijms21144940.
Texto completoBorzova, Vera A., Svetlana G. Roman, Anastasiya V. Pivovarova y Natalia A. Chebotareva. "Effects of Molecular Crowding and Betaine on HSPB5 Interactions, with Target Proteins Differing in the Quaternary Structure and Aggregation Mechanism". International Journal of Molecular Sciences 23, n.º 23 (6 de diciembre de 2022): 15392. http://dx.doi.org/10.3390/ijms232315392.
Texto completoDemosthene, Bryan, Myeongsang Lee, Ryan R. Marracino, James B. Heidings y Ellen Hyeran Kang. "Molecular Basis for Actin Polymerization Kinetics Modulated by Solution Crowding". Biomolecules 13, n.º 5 (2 de mayo de 2023): 786. http://dx.doi.org/10.3390/biom13050786.
Texto completoKim, Youngchan y Jeetain Mittal. "Crowding Induced Coil-Globule Transitions of Intrinsically Disordered Proteins". Biophysical Journal 112, n.º 3 (febrero de 2017): 511a. http://dx.doi.org/10.1016/j.bpj.2016.11.2764.
Texto completoQu, Youxing y D. W. Bolen. "Efficacy of macromolecular crowding in forcing proteins to fold". Biophysical Chemistry 101-102 (diciembre de 2002): 155–65. http://dx.doi.org/10.1016/s0301-4622(02)00148-5.
Texto completoGorensek-Benitez, Annelise H., Bryan Kirk y Jeffrey K. Myers. "Protein Fibrillation under Crowded Conditions". Biomolecules 12, n.º 7 (6 de julio de 2022): 950. http://dx.doi.org/10.3390/biom12070950.
Texto completoAndré, Alain A. M. y Evan Spruijt. "Liquid–Liquid Phase Separation in Crowded Environments". International Journal of Molecular Sciences 21, n.º 16 (17 de agosto de 2020): 5908. http://dx.doi.org/10.3390/ijms21165908.
Texto completoSnead, Wilton T., Wade F. Zeno, Grace Kago, Ryan W. Perkins, J. Blair Richter, Chi Zhao, Eileen M. Lafer y Jeanne C. Stachowiak. "BAR scaffolds drive membrane fission by crowding disordered domains". Journal of Cell Biology 218, n.º 2 (30 de noviembre de 2018): 664–82. http://dx.doi.org/10.1083/jcb.201807119.
Texto completoAl-Ayoubi, S. R., P. H. Schummel, M. Golub, J. Peters y R. Winter. "Influence of cosolvents, self-crowding, temperature and pressure on the sub-nanosecond dynamics and folding stability of lysozyme". Physical Chemistry Chemical Physics 19, n.º 22 (2017): 14230–37. http://dx.doi.org/10.1039/c7cp00705a.
Texto completoRoss, Murial L., Jeffrey Kunkel, Steven Long y Prashanth Asuri. "Combined Effects of Confinement and Macromolecular Crowding on Protein Stability". International Journal of Molecular Sciences 21, n.º 22 (12 de noviembre de 2020): 8516. http://dx.doi.org/10.3390/ijms21228516.
Texto completoTokuriki, N., T. Yomo, Y. Katakura, K. Ogasawara, K. Yutani y I. Urabe. "Crowding effect of proteins with random sequence in polyethylene glycol". Seibutsu Butsuri 40, supplement (2000): S172. http://dx.doi.org/10.2142/biophys.40.s172_2.
Texto completoLi, Chao, Xiangxiang Zhang, Mingdong Dong y Xiaojun Han. "Progress on Crowding Effect in Cell-like Structures". Membranes 12, n.º 6 (3 de junio de 2022): 593. http://dx.doi.org/10.3390/membranes12060593.
Texto completoMondal, Somnath, Ravula Thirupathi y Hanudatta S. Atreya. "Carbon quantum dots as a macromolecular crowder". RSC Advances 5, n.º 6 (2015): 4489–92. http://dx.doi.org/10.1039/c4ra14019b.
Texto completoTAKAGI, Fumiko y Syoji TAKADA. "Structure formation of proteins and "Molecular crowding" : Molecular dynamics simulation". Seibutsu Butsuri 41, supplement (2001): S175. http://dx.doi.org/10.2142/biophys.41.s175_4.
Texto completoWojciechowski, M. y Marek Cieplak. "Effects of confinement and crowding on folding of model proteins". Biosystems 94, n.º 3 (diciembre de 2008): 248–52. http://dx.doi.org/10.1016/j.biosystems.2008.06.016.
Texto completoSulmann, Stefan, Daniele Dell'Orco, Valerio Marino, Petra Behnen y Karl-Wilhelm Koch. "Conformational Changes in Calcium-Sensor Proteins under Molecular Crowding Conditions". Chemistry - A European Journal 20, n.º 22 (27 de marzo de 2014): 6756–62. http://dx.doi.org/10.1002/chem.201402146.
Texto completoDey, Pinki y Arnab Bhattacherjee. "Disparity in anomalous diffusion of proteins searching for their target DNA sites in a crowded medium is controlled by the size, shape and mobility of macromolecular crowders". Soft Matter 15, n.º 9 (2019): 1960–69. http://dx.doi.org/10.1039/c8sm01933a.
Texto completoBESSA RAMOS, ESIO, KATHELIJNE WINTRAECKEN, ANS GEERLING y RENKO DE VRIES. "SYNERGY OF DNA-BENDING NUCLEOID PROTEINS AND MACROMOLECULAR CROWDING IN CONDENSING DNA". Biophysical Reviews and Letters 02, n.º 03n04 (octubre de 2007): 259–65. http://dx.doi.org/10.1142/s1793048007000556.
Texto completoByun, Wan Gi, Jihye Lee, Seungtaek Kim y Seung Bum Park. "Harnessing stress granule formation by small molecules to inhibit the cellular replication of SARS-CoV-2". Chemical Communications 57, n.º 93 (2021): 12476–79. http://dx.doi.org/10.1039/d1cc05508a.
Texto completoQin, Sanbo y Huan-Xiang Zhou. "Effects of Macromolecular Crowding on the Conformational Ensembles of Disordered Proteins". Journal of Physical Chemistry Letters 4, n.º 20 (30 de septiembre de 2013): 3429–34. http://dx.doi.org/10.1021/jz401817x.
Texto completoCino, Elio A., Mikko Karttunen y Wing-Yiu Choy. "Effects of Molecular Crowding on the Dynamics of Intrinsically Disordered Proteins". PLoS ONE 7, n.º 11 (26 de noviembre de 2012): e49876. http://dx.doi.org/10.1371/journal.pone.0049876.
Texto completoWei, Yuzhang, Isabel Mayoral-Delgado, Nicolas A. Stewart y Marcus K. Dymond. "Macromolecular crowding and membrane binding proteins: The case of phospholipase A1". Chemistry and Physics of Lipids 218 (enero de 2019): 91–102. http://dx.doi.org/10.1016/j.chemphyslip.2018.12.006.
Texto completoLemetti, Laura, Sami-Pekka Hirvonen, Dmitrii Fedorov, Piotr Batys, Maria Sammalkorpi, Heikki Tenhu, Markus B. Linder y A. Sesilja Aranko. "Molecular crowding facilitates assembly of spidroin-like proteins through phase separation". European Polymer Journal 112 (marzo de 2019): 539–46. http://dx.doi.org/10.1016/j.eurpolymj.2018.10.010.
Texto completode Vries, Renko. "DNA condensation in bacteria: Interplay between macromolecular crowding and nucleoid proteins". Biochimie 92, n.º 12 (diciembre de 2010): 1715–21. http://dx.doi.org/10.1016/j.biochi.2010.06.024.
Texto completoShahid, Sumra, Ikramul Hasan, Faizan Ahmad, Md Imtaiyaz Hassan y Asimul Islam. "Carbohydrate-Based Macromolecular Crowding-Induced Stabilization of Proteins: Towards Understanding the Significance of the Size of the Crowder". Biomolecules 9, n.º 9 (12 de septiembre de 2019): 477. http://dx.doi.org/10.3390/biom9090477.
Texto completoGupta, Munishwar Nath y Vladimir N. Uversky. "Pre-Molten, Wet, and Dry Molten Globules en Route to the Functional State of Proteins". International Journal of Molecular Sciences 24, n.º 3 (26 de enero de 2023): 2424. http://dx.doi.org/10.3390/ijms24032424.
Texto completoBokvist, Marcus y Gerhard Gröbner. "Misfolding of Amyloidogenic Proteins at Membrane Surfaces: The Impact of Macromolecular Crowding". Journal of the American Chemical Society 129, n.º 48 (diciembre de 2007): 14848–49. http://dx.doi.org/10.1021/ja076059o.
Texto completoCheung, M. S., D. Klimov y D. Thirumalai. "Molecular crowding enhances native state stability and refolding rates of globular proteins". Proceedings of the National Academy of Sciences 102, n.º 13 (21 de marzo de 2005): 4753–58. http://dx.doi.org/10.1073/pnas.0409630102.
Texto completoHouser, Justin R., David J. Busch, David R. Bell, Brian Li, Pengyu Ren y Jeanne C. Stachowiak. "The impact of physiological crowding on the diffusivity of membrane bound proteins". Soft Matter 12, n.º 7 (2016): 2127–34. http://dx.doi.org/10.1039/c5sm02572a.
Texto completoRoman, Marisa I., Guoliang Yang y Frank Ferrone. "Non Linear Effects of Macromolecular Crowding on the Mechanical Unfolding of Proteins". Biophysical Journal 104, n.º 2 (enero de 2013): 566a. http://dx.doi.org/10.1016/j.bpj.2012.11.3138.
Texto completoKrepel, Dana y Yaakov Levy. "Intersegmental transfer of proteins between DNA regions in the presence of crowding". Physical Chemistry Chemical Physics 19, n.º 45 (2017): 30562–69. http://dx.doi.org/10.1039/c7cp05251k.
Texto completoGoldenberg, David P. y Brian Argyle. "Self Crowding of Globular Proteins Studied by Small-Angle X-Ray Scattering". Biophysical Journal 106, n.º 4 (febrero de 2014): 895–904. http://dx.doi.org/10.1016/j.bpj.2013.12.004.
Texto completoKumar, Rajesh, Rajesh Kumar, Deepak Sharma, Mansi Garg, Vinay Kumar y Mukesh Chand Agarwal. "Macromolecular crowding-induced molten globule states of the alkali pH-denatured proteins". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1866, n.º 11 (noviembre de 2018): 1102–14. http://dx.doi.org/10.1016/j.bbapap.2018.08.012.
Texto completoGarner, M. M. y M. B. Burg. "Macromolecular crowding and confinement in cells exposed to hypertonicity". American Journal of Physiology-Cell Physiology 266, n.º 4 (1 de abril de 1994): C877—C892. http://dx.doi.org/10.1152/ajpcell.1994.266.4.c877.
Texto completoYang, Yin, Shen-Na Chen, Feng Yang, Xia-Yan Li, Akiva Feintuch, Xun-Cheng Su y Daniella Goldfarb. "In-cell destabilization of a homodimeric protein complex detected by DEER spectroscopy". Proceedings of the National Academy of Sciences 117, n.º 34 (11 de agosto de 2020): 20566–75. http://dx.doi.org/10.1073/pnas.2005779117.
Texto completoHöfig, Henning, Michele Cerminara, Ilona Ritter, Antonie Schöne, Martina Pohl, Victoria Steffen, Julia Walter, Ignacio Vergara Dal Pont, Alexandros Katranidis y Jörg Fitter. "Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled Species". Molecules 23, n.º 12 (27 de noviembre de 2018): 3105. http://dx.doi.org/10.3390/molecules23123105.
Texto completoYu, Isseki, Takaharu Mori, Tadashi Ando, Ryuhei Harada, Jaewoon Jung, Yuji Sugita y Michael Feig. "Dynamics and Interactions of Proteins and Metabolites in Cellular Crowding Environments: All-Atom Molecular Dynamics Study of Proteins and Metabolites in Cellular Crowding Environments: All-atom Molecular Dynamics Study". Biophysical Journal 114, n.º 3 (febrero de 2018): 190a. http://dx.doi.org/10.1016/j.bpj.2017.11.1063.
Texto completoMadden, T. L. y J. Herzfeld. "Crowding-induced organization of cytoskeletal elements: II. Dissolution of spontaneously formed filament bundles by capping proteins." Journal of Cell Biology 126, n.º 1 (1 de julio de 1994): 169–74. http://dx.doi.org/10.1083/jcb.126.1.169.
Texto completo