Artículos de revistas sobre el tema "Proteins – Affinity labeling"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Proteins – Affinity labeling".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
SWEET, FREDERICK y GARY L. MURDOCK. "Affinity Labeling of Hormone-Specific Proteins*". Endocrine Reviews 8, n.º 2 (mayo de 1987): 154–84. http://dx.doi.org/10.1210/edrv-8-2-154.
Texto completoVinkenborg, Jan L., Günter Mayer y Michael Famulok. "Aptamer-Based Affinity Labeling of Proteins". Angewandte Chemie International Edition 51, n.º 36 (2 de agosto de 2012): 9176–80. http://dx.doi.org/10.1002/anie.201204174.
Texto completoLöw, Andreas, Heinz G. Faulhammer y Mathias Sprinzl. "Affinity labeling of GTP-binding proteins in cellular extracts". FEBS Letters 303, n.º 1 (25 de mayo de 1992): 64–68. http://dx.doi.org/10.1016/0014-5793(92)80478-y.
Texto completoSong, Yinan, Feng Xiong, Jianzhao Peng, Yi Man Eva Fung, Yiran Huang y Xiaoyu Li. "Introducing aldehyde functionality to proteins using ligand-directed affinity labeling". Chemical Communications 56, n.º 45 (2020): 6134–37. http://dx.doi.org/10.1039/d0cc01982h.
Texto completoMaldonado, H. M. y P. M. Cala. "Labeling of the Amphiuma erythrocyte K+/H+ exchanger with H2DIDS". American Journal of Physiology-Cell Physiology 267, n.º 4 (1 de octubre de 1994): C1002—C1012. http://dx.doi.org/10.1152/ajpcell.1994.267.4.c1002.
Texto completoChen, Xi, Fu Li y Yao-Wen Wu. "Chemical labeling of intracellular proteins via affinity conjugation and strain-promoted cycloadditions in live cells". Chemical Communications 51, n.º 92 (2015): 16537–40. http://dx.doi.org/10.1039/c5cc05208d.
Texto completoMasselin, Arnaud, Antoine Petrelli, Maxime Donzel, Sylvie Armand, Sylvain Cottaz y Sébastien Fort. "Unprecedented Affinity Labeling of Carbohydrate-Binding Proteins with s-Triazinyl Glycosides". Bioconjugate Chemistry 30, n.º 9 (12 de agosto de 2019): 2332–39. http://dx.doi.org/10.1021/acs.bioconjchem.9b00432.
Texto completoVale, M. G. "Affinity labeling of calmodulin-binding proteins in skeletal muscle sarcoplasmic reticulum." Journal of Biological Chemistry 263, n.º 26 (septiembre de 1988): 12872–77. http://dx.doi.org/10.1016/s0021-9258(18)37642-7.
Texto completoLaudon, Moshe y Nava Zisapel. "Melatonin binding proteins identified in the rat brain by affinity labeling". FEBS Letters 288, n.º 1-2 (19 de agosto de 1991): 105–8. http://dx.doi.org/10.1016/0014-5793(91)81013-x.
Texto completoKuwahara, Daichi, Takahiro Hasumi, Hajime Kaneko, Madoka Unno, Daisuke Takahashi y Kazunobu Toshima. "A solid-phase affinity labeling method for target-selective isolation and modification of proteins". Chem. Commun. 50, n.º 98 (2014): 15601–4. http://dx.doi.org/10.1039/c4cc06783e.
Texto completoCullen, Paul A., Xiaoyi Xu, James Matsunaga, Yolanda Sanchez, Albert I. Ko, David A. Haake y Ben Adler. "Surfaceome of Leptospira spp." Infection and Immunity 73, n.º 8 (agosto de 2005): 4853–63. http://dx.doi.org/10.1128/iai.73.8.4853-4863.2005.
Texto completoCheng, Bo, Qi Tang, Che Zhang y Xing Chen. "Glycan Labeling and Analysis in Cells and In Vivo". Annual Review of Analytical Chemistry 14, n.º 1 (5 de junio de 2021): 363–87. http://dx.doi.org/10.1146/annurev-anchem-091620-091314.
Texto completoHayashi, Takahiro y Itaru Hamachi. "Traceless Affinity Labeling of Endogenous Proteins for Functional Analysis in Living Cells". Accounts of Chemical Research 45, n.º 9 (8 de junio de 2012): 1460–69. http://dx.doi.org/10.1021/ar200334r.
Texto completoGoshe, Michael B., Josip Blonder y Richard D. Smith. "Affinity Labeling of Highly Hydrophobic Integral Membrane Proteins for Proteome-Wide Analysis". Journal of Proteome Research 2, n.º 2 (abril de 2003): 153–61. http://dx.doi.org/10.1021/pr0255607.
Texto completoZhang, Jianfu, Jianzhao Peng, Yiran Huang, Ling Meng, Qingrong Li, Feng Xiong y Xiaoyu Li. "Identification of Histone deacetylase (HDAC)‐Associated Proteins with DNA‐Programmed Affinity Labeling". Angewandte Chemie International Edition 59, n.º 40 (11 de agosto de 2020): 17525–32. http://dx.doi.org/10.1002/anie.202001205.
Texto completoZhang, Jianfu, Jianzhao Peng, Yiran Huang, Ling Meng, Qingrong Li, Feng Xiong y Xiaoyu Li. "Identification of Histone deacetylase (HDAC)‐Associated Proteins with DNA‐Programmed Affinity Labeling". Angewandte Chemie 132, n.º 40 (11 de agosto de 2020): 17678–85. http://dx.doi.org/10.1002/ange.202001205.
Texto completoCosma, Antonio. "Affinity Biotinylation: Nonradioactive Method for Specific Selection and Labeling of Cellular Proteins". Analytical Biochemistry 252, n.º 1 (octubre de 1997): 10–14. http://dx.doi.org/10.1006/abio.1997.2289.
Texto completoWeissinger, Ronja, Lisa Heinold, Saira Akram, Ralf-Peter Jansen y Orit Hermesh. "RNA Proximity Labeling: A New Detection Tool for RNA–Protein Interactions". Molecules 26, n.º 8 (14 de abril de 2021): 2270. http://dx.doi.org/10.3390/molecules26082270.
Texto completoRobinson, M. S. y B. M. Pearse. "Immunofluorescent localization of 100K coated vesicle proteins." Journal of Cell Biology 102, n.º 1 (1 de enero de 1986): 48–54. http://dx.doi.org/10.1083/jcb.102.1.48.
Texto completoTrinkle-Mulcahy, Laura. "Recent advances in proximity-based labeling methods for interactome mapping". F1000Research 8 (31 de enero de 2019): 135. http://dx.doi.org/10.12688/f1000research.16903.1.
Texto completoBraner, M., A. Kollmannsperger, R. Wieneke y R. Tampé. "‘Traceless’ tracing of proteins – high-affinity trans-splicing directed by a minimal interaction pair". Chemical Science 7, n.º 4 (2016): 2646–52. http://dx.doi.org/10.1039/c5sc02936h.
Texto completoPfeuffer, Elke y Thomas Pfeuffer. "Affinity labeling of forskolin-binding proteins comparison between glucose carrier and adenylate cyclase". FEBS Letters 248, n.º 1-2 (8 de mayo de 1989): 13–17. http://dx.doi.org/10.1016/0014-5793(89)80422-3.
Texto completoTomohiro, Takenori, Hirotsugu Inoguchi, Souta Masuda y Yasumaru Hatanaka. "Affinity-based fluorogenic labeling of ATP-binding proteins with sequential photoactivatable cross-linkers". Bioorganic & Medicinal Chemistry Letters 23, n.º 20 (octubre de 2013): 5605–8. http://dx.doi.org/10.1016/j.bmcl.2013.08.041.
Texto completoKonziase, Benetode. "Biotinylated probes of artemisinin with labeling affinity toward Trypanosoma brucei brucei target proteins". Analytical Biochemistry 482 (agosto de 2015): 25–31. http://dx.doi.org/10.1016/j.ab.2015.04.020.
Texto completoSafer, B., R. B. Cohen, S. Garfinkel y J. A. Thompson. "DNA affinity labeling of adenovirus type 2 upstream promoter sequence-binding factors identifies two distinct proteins." Molecular and Cellular Biology 8, n.º 1 (enero de 1988): 105–13. http://dx.doi.org/10.1128/mcb.8.1.105.
Texto completoSafer, B., R. B. Cohen, S. Garfinkel y J. A. Thompson. "DNA affinity labeling of adenovirus type 2 upstream promoter sequence-binding factors identifies two distinct proteins". Molecular and Cellular Biology 8, n.º 1 (enero de 1988): 105–13. http://dx.doi.org/10.1128/mcb.8.1.105-113.1988.
Texto completoWong, Franklin C., John Boja, Beng Ho, Michael J. Kuhar y Dean F. Wong. "Affinity Labeling of Membrane Receptors Using Tissue-Penetrating Radiations". BioMed Research International 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/503095.
Texto completoYefidoff, Revital y Amnon Albeck. "12-Substituted-13,14-dihydroretinols designed for affinity labeling of retinol binding- and processing proteins". Tetrahedron 60, n.º 37 (septiembre de 2004): 8093–102. http://dx.doi.org/10.1016/j.tet.2004.06.116.
Texto completoFukui, Toshio. "Exploring the Nucleotide-Binding Site in Proteins by Affinity Labeling and Site-Directed Mutagenesis1". Journal of Biochemistry 117, n.º 6 (junio de 1995): 1139–44. http://dx.doi.org/10.1093/oxfordjournals.jbchem.a124834.
Texto completoGibson, Kathryn, Yumi Kumagai y Yasuko Rikihisa. "Proteomic Analysis of Neorickettsia sennetsu Surface-Exposed Proteins and Porin Activity of the Major Surface Protein P51". Journal of Bacteriology 192, n.º 22 (10 de septiembre de 2010): 5898–905. http://dx.doi.org/10.1128/jb.00632-10.
Texto completoTakata, K. y SJ Singer. "Localization of high concentrations of phosphotyrosine-modified proteins in mouse megakaryocytes". Blood 71, n.º 3 (1 de marzo de 1988): 818–21. http://dx.doi.org/10.1182/blood.v71.3.818.818.
Texto completoTakata, K. y SJ Singer. "Localization of high concentrations of phosphotyrosine-modified proteins in mouse megakaryocytes". Blood 71, n.º 3 (1 de marzo de 1988): 818–21. http://dx.doi.org/10.1182/blood.v71.3.818.bloodjournal713818.
Texto completoKeeble, Anthony H., Paula Turkki, Samuel Stokes, Irsyad N. A. Khairil Anuar, Rolle Rahikainen, Vesa P. Hytönen y Mark Howarth. "Approaching infinite affinity through engineering of peptide–protein interaction". Proceedings of the National Academy of Sciences 116, n.º 52 (10 de diciembre de 2019): 26523–33. http://dx.doi.org/10.1073/pnas.1909653116.
Texto completoLeBel, Denis y Marlyne Beattie. "Identification of the catalytic subunit of the ATP diphosphohydrolase by photoaffinity labeling of high-affinity ATP-binding sites of pancreatic zymogen granule membranes with 8-azido-[α-32P]ATP". Biochemistry and Cell Biology 64, n.º 1 (1 de enero de 1986): 13–20. http://dx.doi.org/10.1139/o86-003.
Texto completoMann, Jasdeep K., Daniel Demonte, Christopher M. Dundas y Sheldon Park. "Cell labeling and proximity dependent biotinylation with engineered monomeric streptavidin". TECHNOLOGY 04, n.º 03 (septiembre de 2016): 152–58. http://dx.doi.org/10.1142/s2339547816400057.
Texto completoTakata, K. y S. J. Singer. "Phosphotyrosine-modified proteins are concentrated at the membranes of epithelial and endothelial cells during tissue development in chick embryos." Journal of Cell Biology 106, n.º 5 (1 de mayo de 1988): 1757–64. http://dx.doi.org/10.1083/jcb.106.5.1757.
Texto completoChoi, Woonyoung, Sonya W. Song y Wei Zhang. "Understanding Cancer through Proteomics". Technology in Cancer Research & Treatment 1, n.º 4 (agosto de 2002): 221–30. http://dx.doi.org/10.1177/153303460200100402.
Texto completoKerbler, Sandra M., Roberto Natale, Alisdair R. Fernie y Youjun Zhang. "From Affinity to Proximity Techniques to Investigate Protein Complexes in Plants". International Journal of Molecular Sciences 22, n.º 13 (1 de julio de 2021): 7101. http://dx.doi.org/10.3390/ijms22137101.
Texto completoRoss, Gregory M., Brian E. McCarry y Ram K. Mishra. "Covalent Affinity Labeling of Brain Catecholamine-Absorbing Proteins Using a High-Specific-Activity Substituted Tetrahydronaphthalene". Journal of Neurochemistry 65, n.º 6 (23 de noviembre de 2002): 2783–89. http://dx.doi.org/10.1046/j.1471-4159.1995.65062783.x.
Texto completoYang, Yin, Qing-Feng Li, Chan Cao, Feng Huang y Xun-Cheng Su. "Site-Specific Labeling of Proteins with a Chemically Stable, High-Affinity Tag for Protein Study". Chemistry - A European Journal 19, n.º 3 (14 de noviembre de 2012): 1097–103. http://dx.doi.org/10.1002/chem.201202495.
Texto completoRickard, J. E. y T. E. Kreis. "Identification of a novel nucleotide-sensitive microtubule-binding protein in HeLa cells." Journal of Cell Biology 110, n.º 5 (1 de mayo de 1990): 1623–33. http://dx.doi.org/10.1083/jcb.110.5.1623.
Texto completoHortin, GL. "Sulfation of tyrosine residues in coagulation factor V". Blood 76, n.º 5 (1 de septiembre de 1990): 946–52. http://dx.doi.org/10.1182/blood.v76.5.946.946.
Texto completoHortin, GL. "Sulfation of tyrosine residues in coagulation factor V". Blood 76, n.º 5 (1 de septiembre de 1990): 946–52. http://dx.doi.org/10.1182/blood.v76.5.946.bloodjournal765946.
Texto completoYe, Xian Zhi. "Application of Biological Target Fishing Technology in Drug Discovery". Materials Science Forum 980 (marzo de 2020): 210–19. http://dx.doi.org/10.4028/www.scientific.net/msf.980.210.
Texto completoRoux, Kyle J., Dae In Kim, Manfred Raida y Brian Burke. "A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells". Journal of Cell Biology 196, n.º 6 (12 de marzo de 2012): 801–10. http://dx.doi.org/10.1083/jcb.201112098.
Texto completoLuo, W., L. R. Latchney y D. J. Culp. "G protein coupling to M1 and M3muscarinic receptors in sublingual glands". American Journal of Physiology-Cell Physiology 280, n.º 4 (1 de abril de 2001): C884—C896. http://dx.doi.org/10.1152/ajpcell.2001.280.4.c884.
Texto completoPearson, R. K., E. M. Hadac y L. J. Miller. "Structural analysis of a distinct subtype of CCK receptor on human gastric smooth muscle tumors". American Journal of Physiology-Gastrointestinal and Liver Physiology 256, n.º 6 (1 de junio de 1989): G1005—G1010. http://dx.doi.org/10.1152/ajpgi.1989.256.6.g1005.
Texto completoHaas, M., P. B. Dunham y B. Forbush. "[3H]bumetanide binding to mouse kidney membranes: identification of corresponding membrane proteins". American Journal of Physiology-Cell Physiology 260, n.º 4 (1 de abril de 1991): C791—C804. http://dx.doi.org/10.1152/ajpcell.1991.260.4.c791.
Texto completoThibonnier, M., T. Goraya y L. Berti-Mattera. "G protein coupling of human platelet V1 vascular vasopressin receptors". American Journal of Physiology-Cell Physiology 264, n.º 5 (1 de mayo de 1993): C1336—C1344. http://dx.doi.org/10.1152/ajpcell.1993.264.5.c1336.
Texto completoKalkhof, Stefan, Stefan Schildbach, Conny Blumert, Friedemann Horn, Martin von Bergen y Dirk Labudde. "PIPINO: A Software Package to Facilitate the Identification of Protein-Protein Interactions from Affinity Purification Mass Spectrometry Data". BioMed Research International 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/2891918.
Texto completo