Literatura académica sobre el tema "Proteins – Affinity labeling"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Proteins – Affinity labeling".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Proteins – Affinity labeling"
SWEET, FREDERICK y GARY L. MURDOCK. "Affinity Labeling of Hormone-Specific Proteins*". Endocrine Reviews 8, n.º 2 (mayo de 1987): 154–84. http://dx.doi.org/10.1210/edrv-8-2-154.
Texto completoVinkenborg, Jan L., Günter Mayer y Michael Famulok. "Aptamer-Based Affinity Labeling of Proteins". Angewandte Chemie International Edition 51, n.º 36 (2 de agosto de 2012): 9176–80. http://dx.doi.org/10.1002/anie.201204174.
Texto completoLöw, Andreas, Heinz G. Faulhammer y Mathias Sprinzl. "Affinity labeling of GTP-binding proteins in cellular extracts". FEBS Letters 303, n.º 1 (25 de mayo de 1992): 64–68. http://dx.doi.org/10.1016/0014-5793(92)80478-y.
Texto completoSong, Yinan, Feng Xiong, Jianzhao Peng, Yi Man Eva Fung, Yiran Huang y Xiaoyu Li. "Introducing aldehyde functionality to proteins using ligand-directed affinity labeling". Chemical Communications 56, n.º 45 (2020): 6134–37. http://dx.doi.org/10.1039/d0cc01982h.
Texto completoMaldonado, H. M. y P. M. Cala. "Labeling of the Amphiuma erythrocyte K+/H+ exchanger with H2DIDS". American Journal of Physiology-Cell Physiology 267, n.º 4 (1 de octubre de 1994): C1002—C1012. http://dx.doi.org/10.1152/ajpcell.1994.267.4.c1002.
Texto completoChen, Xi, Fu Li y Yao-Wen Wu. "Chemical labeling of intracellular proteins via affinity conjugation and strain-promoted cycloadditions in live cells". Chemical Communications 51, n.º 92 (2015): 16537–40. http://dx.doi.org/10.1039/c5cc05208d.
Texto completoMasselin, Arnaud, Antoine Petrelli, Maxime Donzel, Sylvie Armand, Sylvain Cottaz y Sébastien Fort. "Unprecedented Affinity Labeling of Carbohydrate-Binding Proteins with s-Triazinyl Glycosides". Bioconjugate Chemistry 30, n.º 9 (12 de agosto de 2019): 2332–39. http://dx.doi.org/10.1021/acs.bioconjchem.9b00432.
Texto completoVale, M. G. "Affinity labeling of calmodulin-binding proteins in skeletal muscle sarcoplasmic reticulum." Journal of Biological Chemistry 263, n.º 26 (septiembre de 1988): 12872–77. http://dx.doi.org/10.1016/s0021-9258(18)37642-7.
Texto completoLaudon, Moshe y Nava Zisapel. "Melatonin binding proteins identified in the rat brain by affinity labeling". FEBS Letters 288, n.º 1-2 (19 de agosto de 1991): 105–8. http://dx.doi.org/10.1016/0014-5793(91)81013-x.
Texto completoKuwahara, Daichi, Takahiro Hasumi, Hajime Kaneko, Madoka Unno, Daisuke Takahashi y Kazunobu Toshima. "A solid-phase affinity labeling method for target-selective isolation and modification of proteins". Chem. Commun. 50, n.º 98 (2014): 15601–4. http://dx.doi.org/10.1039/c4cc06783e.
Texto completoTesis sobre el tema "Proteins – Affinity labeling"
Lui, James Kwok Ching. "A fluorescent labelling technique to detect changes in the thiol redox state of proteins following mild oxidative stress". University of Western Australia. School of Biomedical, Biomolecular and Chemical Sciences, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0056.
Texto completoSong, Zhi-Ning. "Development of novel affinity-guided catalysts for specific labeling of endogenous proteins in living systems". Kyoto University, 2017. http://hdl.handle.net/2433/228238.
Texto completoCiccotosto, Silvana. "The preparation and evaluation of N-acetylneuraminic acid derivatives as probes of sialic acid-recognizing proteins". Monash University, Dept. of Medicinal Chemistry, 2004. http://arrow.monash.edu.au/hdl/1959.1/9649.
Texto completoTran, Hang T. "Photocleavable Linker for Protein Affinity Labeling to Identify the Binding Target of KCN-1". Digital Archive @ GSU, 2010. http://digitalarchive.gsu.edu/chemistry_theses/35.
Texto completoKaminska, Monika. "New activity-based probes to detect matrix metalloproteases". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS538/document.
Texto completoMatrix MetalloProteases (MMPs) as zinc endopeptidases have a wide range of biological functions, and changes in their proteolytic activity underlie many biological disorders. Since their proteolytic activity has to be tightly controlled to prevent tissue destruction, theses proteases are subjected to numerous posttranslational modifications in vivo. They are secreted under latent forms outside of the cells, and are subsequently processed into their functional form that can be further inhibited by endogenous inhibitors. Due to their delineated area of activation, MMP active forms have long been considered for their unique ability to degrade extracellular substrates. However, turnover and breakdown of the extracellular matrix are neither the sole nor the main function of MMPs. These enzymes can indeed process a wide variety of non-matrix substrates and are involved in the regulation of multiple aspects of tumor progression, immunity and inflammation. To add further complexity to MMPs biology, some members within the family were recently reported to have intracellular localization associated to non-proteolytic functions. These observations but also those evidencing that some MMPs participate in disease progression while others have a protective function, stress the need to better document their spatial and temporal activation in various biological contexts.Activity-based protein profiling (ABPP) aims to analyze the functional state of proteins within complex biological samples. To this purpose, activity-based probes (ABPs) that react with enzymes in a mechanism-based manner have been successfully developed for the profiling of several enzymes including serine and cysteine proteases. A typical Activity-Based probe (ABP) is composed of i) a reactive warhead, which reacts in a covalent manner with enzyme active site residues, ii) a targeting moiety that imposes selectivity upon the reactive group and iii) a detectable group for subsequent analyses. This approach is not applicable to MMPs, which lack a targetable nucleophile involved in the catalysis. In this respect, all ABPs directed to MMPs are affinity-based probes (AfBPs) containing within their structure a photo cross-linking group that promotes the formation of a covalent complex upon UV-irradiation. Such photoactivatable probes have been successfully developed for the detection of MMPs under their active forms in fluids and tissue extracts, but not in living animals where the photo-activation step is not feasible.By relying on a favorable structural context and by exploiting the ligand-directed acyl imidazole (LDAI) chemistry, we have identified a novel series of AfBPs capable of covalently modifying matrix metalloproteases without making use of photo-activation. These active-site-directed probes whose structure was derived from that of a MMP12 selective inhibitor harbored a reactive acyl imidazole in their P3' position. They demonstrated their labelling specificity in vitro by covalently modifying a single Lysine residue within the MMP-12 S3' region. We also showed that these probes only targeted functional states of hMMP-12 and spared forms whose active site was occluded either by a synthetic or a natural inhibitor. We have validated the ability of these chemical probes to efficiently label human MMP12 in complex proteomes. In this case, down to 50 ng of hMMP12 corresponding to 0.05% of the whole proteome can be labelled and detected by in-gel fluorescence analysis. We demonstrated that this approach also allowed detecting endogenous MMPs secreted by stimulated-macrophages. In addition, by modifying the nature of the targeting moiety, we have extended this affinity-labeling approach to six other MMPs.By developing the first “photo activation-free” strategy to covalently modify active forms of MMPs, the unresolved proteomic profiling of native MMPs should be now accessible both in complex proteomes and in preclinical model in which MMPs are potential relevant targets
Cigler, Marko [Verfasser], Kathrin [Akademischer Betreuer] Lang, Kathrin [Gutachter] Lang y Stephan [Gutachter] Hacker. "Genetically encoding unnatural amino acids: Novel tools for protein labelling and chemical stabilisation of low-affinity protein complexes / Marko Cigler ; Gutachter: Kathrin Lang, Stephan Hacker ; Betreuer: Kathrin Lang". München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1220322318/34.
Texto completoGoulding, Ann Marie. "Biochemical applications of DsRed-monomer utilizing fluorescence and metal-binding affinity". 2011. http://hdl.handle.net/1805/2480.
Texto completoThe discovery and isolation of naturally occurring fluorescent proteins, FPs, have provided much needed tools for molecular and cellular level studies. Specifically the cloning of green fluorescent protein, GFP, revolutionized the field of biotechnology and biochemical research. Recently, a red fluorescent protein, DsRed, isolated from the Discosoma coral has further expanded the pallet of available fluorescent tools. DsRed shares only 23 % amino acid sequence homology with GFP, however the X-ray crystal structures of the two proteins are nearly identical. DsRed has been subjected to a number of mutagenesis studies, which have been found to offer improved physical and spectral characteristics. One such mutant, DsRed-Monomer, with a total of 45 amino acid substitutions in native DsRed, has shown improved fluorescence characteristics without the toxic oligomerization seen for the native protein. In our laboratory, we have demonstrated that DsRed proteins have a unique and selective copper-binding affinity, which results in fluorescence quenching. This copper-binding property was utilized in the purification of DsRed proteins using copper-bound affinity columns. The work presented here has explored the mechanism of copper-binding by DsRed-Monomer using binding studies, molecular biology, and other biochemical techniques. Another focus of this thesis work was to demonstrate the applications of DsRed-Monomer in biochemical studies based on the copper-binding affinity and fluorescence properties of the protein. To achieve this, we have focused on genetic fusions of DsRed-Monomer with peptides and proteins. The work with these fusions have demonstrated the feasibility of using DsRed-Monomer as a dual functional tag, as both an affinity tag and as a label in the development of a fluorescence assay to detect a ligand of interest. Further, a complex between DsRed-Monomer-bait peptide/protein fusion and an interacting protein has been isolated taking advantage of the copper-binding affinity of DsRed-Monomer. We have also demonstrated the use of non-natural amino acid analogues, incorporated into the fluorophore of DsRed-Monomer, as a tool for varying the spectral properties of the protein. These mutations demonstrated not only shifted fluorescence emission compared to the native protein, but also improved extinction coefficients and quantum yields.
Krusemark, Casey J. "Synthetic chemical approaches to proteomics : affinity labeling and protein functional group modification /". 2007. http://www.library.wisc.edu/databases/connect/dissertations.html.
Texto completoLibros sobre el tema "Proteins – Affinity labeling"
Protein affinity tags: Methods and protocols. New York: Humana Press, 2014.
Buscar texto completoViktorovich, Vlasov Valentin, ed. Affinity modification of biopolymers. Boca Raton, Fla: CRC Press, 1989.
Buscar texto completo1949-, Müller S. C., ed. Synthetic peptides as antigens. Amsterdam: Elsevier, 1999.
Buscar texto completo1940-, Creighton Thomas E., ed. Protein function: A practical approach. Oxford: IRL Press, 1989.
Buscar texto completo1940-, Creighton Thomas E., ed. Protein function: A practical approach. 2a ed. Oxford: IRL Press at Oxford University Press, 1997.
Buscar texto completoCreighton, Thomas E. Protein Structure and Protein Function: A Practical Approach 2 Volume Set (Practical Approach Series, 175). Oxford University Press, USA, 1997.
Buscar texto completoProtein Structure and Protein Function: A Practical Approach 2 Volume Set (The Practical Approach Series , No 174&175). 2a ed. Oxford University Press, USA, 1997.
Buscar texto completoCapítulos de libros sobre el tema "Proteins – Affinity labeling"
Tamura, Tomonori y Itaru Hamachi. "Labeling Proteins by Affinity-Guided DMAP Chemistry". En Site-Specific Protein Labeling, 229–42. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2272-7_16.
Texto completoColman, Roberta F. "Advances in Affinity Labeling of Purine Nucleotide Sites in Dehydrogenases". En Proteins, 569–80. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1787-6_57.
Texto completoMisono, Kunio S. "Atrial Natriuretic Factor Receptor in Adrenal Plasma Membrane: Identification by Photo-Affinity Labeling". En Proteins, 641–48. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1787-6_64.
Texto completoPeter, Marcus E. y Mathias Sprinzl. "Affinity Labeling of the GDP/GTP Binding Site in Thermus Thermophilus Elongation Factor Tu". En The Guanine — Nucleotide Binding Proteins, 99–110. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4757-2037-2_10.
Texto completoChen, Xi, Fu Li y Yao-Wen Wu. "Affinity Conjugation for Rapid and Covalent Labeling of Proteins in Live Cells". En Methods in Molecular Biology, 191–202. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9537-0_15.
Texto completoLandgraf, Peter, Elmer R. Antileo, Erin M. Schuman y Daniela C. Dieterich. "BONCAT: Metabolic Labeling, Click Chemistry, and Affinity Purification of Newly Synthesized Proteomes". En Site-Specific Protein Labeling, 199–215. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2272-7_14.
Texto completoSinger, S. J. "Affinity Labelling of Protein Active Sites". En Ciba Foundation Symposium - Molecular Properties of Drug Receptors, 229–46. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470719763.ch11.
Texto completoJonák, Jiří, Karel Karas y Ivan Rychlík. "Characterization of Elongation Factor Tu from Bacillus Subtilis Modified by Affinity Labelling". En The Guanine — Nucleotide Binding Proteins, 111–19. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4757-2037-2_11.
Texto completoXiao, Zhen y Timothy D. Veenstra. "Comparison of Protein Expression by Isotope-Coded Affinity Tag Labeling". En Methods in Molecular Biology™, 181–92. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-117-8_10.
Texto completoJi, Tae H., Ryuichiro Nishimura y Inhae Ji. "Chapter 11 Affinity Labeling of Binding Proteins for the Study of Endocytic Pathways". En Methods in Cell Biology, 277–304. Elsevier, 1989. http://dx.doi.org/10.1016/s0091-679x(08)61176-0.
Texto completoActas de conferencias sobre el tema "Proteins – Affinity labeling"
Kruithof, E. KO, W. D. Schleuning y F. Bachman. "PLASMINOGEN ACTIVATOR INHIBITOR BIOCHEMICAL AND CLINICAL ASPECTS". En XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644764.
Texto completo