Literatura académica sobre el tema "Protease encoding genes"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Protease encoding genes".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Protease encoding genes"
Xavier-Filho, J. y F. A. Paiva Campos. "Genes encoding protease inhibitors". Plant Molecular Biology Reporter 12, n.º 2 (junio de 1994): S58—S59. http://dx.doi.org/10.1007/bf02671572.
Texto completoReid, Vernita J., Louwrens W. Theron, Maret du Toit y Benoit Divol. "Identification and Partial Characterization of Extracellular Aspartic Protease Genes from Metschnikowia pulcherrima IWBT Y1123 and Candida apicola IWBT Y1384". Applied and Environmental Microbiology 78, n.º 19 (20 de julio de 2012): 6838–49. http://dx.doi.org/10.1128/aem.00505-12.
Texto completoAkula, Srinivas, Zhirong Fu, Sara Wernersson y Lars Hellman. "The Evolutionary History of the Chymase Locus -a Locus Encoding Several of the Major Hematopoietic Serine Proteases". International Journal of Molecular Sciences 22, n.º 20 (11 de octubre de 2021): 10975. http://dx.doi.org/10.3390/ijms222010975.
Texto completoLewis, Janina P., Divya Iyer y Cecilia Anaya-Bergman. "Adaptation of Porphyromonas gingivalis to microaerophilic conditions involves increased consumption of formate and reduced utilization of lactate". Microbiology 155, n.º 11 (1 de noviembre de 2009): 3758–74. http://dx.doi.org/10.1099/mic.0.027953-0.
Texto completoLundwall, Åke y Adam Clauss. "Genes encoding WFDC- and Kunitz-type protease inhibitor domains: are they related?" Biochemical Society Transactions 39, n.º 5 (21 de septiembre de 2011): 1398–402. http://dx.doi.org/10.1042/bst0391398.
Texto completoBasta, David W., David Angeles-Albores, Melanie A. Spero, John A. Ciemniecki y Dianne K. Newman. "Heat-shock proteases promote survival of Pseudomonas aeruginosa during growth arrest". Proceedings of the National Academy of Sciences 117, n.º 8 (6 de febrero de 2020): 4358–67. http://dx.doi.org/10.1073/pnas.1912082117.
Texto completoBidochka, Michael J. y Michael J. Melzer. "Genetic polymorphisms in three subtilisin-like protease isoforms (Pr1A, Pr1B, and Pr1C) from Metarhizium strains". Canadian Journal of Microbiology 46, n.º 12 (1 de diciembre de 2000): 1138–44. http://dx.doi.org/10.1139/w00-112.
Texto completoLewis, Janina P. y Francis L. Macrina. "IS195, an Insertion Sequence-Like Element Associated with Protease Genes in Porphyromonas gingivalis". Infection and Immunity 66, n.º 7 (1 de julio de 1998): 3035–42. http://dx.doi.org/10.1128/iai.66.7.3035-3042.1998.
Texto completoGARNIER, Gérard, Antonella CIRCOLO, Yuanyuan XU y John E. VOLANAKIS. "Complement C1r and C1s genes are duplicated in the mouse: differential expression generates alternative isomorphs in the liver and in the male reproductive system". Biochemical Journal 371, n.º 2 (15 de abril de 2003): 631–40. http://dx.doi.org/10.1042/bj20021555.
Texto completoHeusel, JW, EM Scarpati, NA Jenkins, DJ Gilbert, NG Copeland, SD Shapiro y TJ Ley. "Molecular cloning, chromosomal location, and tissue-specific expression of the murine cathepsin G gene". Blood 81, n.º 6 (15 de marzo de 1993): 1614–23. http://dx.doi.org/10.1182/blood.v81.6.1614.1614.
Texto completoTesis sobre el tema "Protease encoding genes"
Camilleri, Raymond Stephen. "Molecular genetic and biochemical studies of the D1-processing protease of Arabidopsis Thaliana". Thesis, Royal Holloway, University of London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322223.
Texto completoMatsebula, Aaron Mfanuzile. "Cloning and expression of a chimeric protease inhibitor encoding gene in Escherichia coli and Pichia pastoris". Master's thesis, University of Cape Town, 1996. http://hdl.handle.net/11427/9649.
Texto completoSquash family protease inhibitors are small peptides of 27-32 residues, hence they are ideal subjects for structure-function studies. Their small size is within the reach of peptide chemical synthesis, which enables one to produce enough peptide material for experimental purposes within a reasonable time frame.
Rawat, Reetika. "Characterization of the promoter of SmCP, the gene encoding Solanum melongena cysteine proteinase". Thesis, Click to view the E-thesis via HKUTO, 2004. http://sunzi.lib.hku.hk/hkuto/record/B34740156.
Texto completoLugli, Elena. "Analysis of a multi-gene family, PRT1. encoding subtilism-like serine proteases in Pneumocystis carinii". Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302531.
Texto completoMa, Pei-yin. "Chemical synthesis, cloning and expression of a gene encoding systemin, a proteinase inhibitor-inducing factor". Master's thesis, University of Cape Town, 1996. http://hdl.handle.net/11427/9241.
Texto completoWound-inducible proteinase inhibitors in plants elicit a defence mechanism by inactivating the proteinases of insects. This triggers a feedback mechanism causing overproduction of digestive enzymes together with a decrease in appetite, leading to starvation. System in, a polypeptide proteinase inhibitor-inducing factor, when applied to cut stems of young tomato plants induces the accumulation of inhibitors in a manner similar to the normal wounding response. We designed and synthesised the minus strand oligonucleotide template complementary to the system in DNA sequence using Escherichia coli codon preferences. The double stranded fragment encoding the 18 amino acid residue systemin was cloned into pUCJ 8 for amplification and subcloning into pMAL-pk for expression as a maltose binding-fusion protein. The recombinant systemin was released by enterokinase and isolated by HPLC. After further purification, the physical characteristics including amino acid composition, peptide sequence and molecular weight of r-systemin were determined. When the recombinant peptide was applied to young tomato plants, it induced the accumulation of proteinase inhibitor I messenger RNA.
BARANIYA, DIVYASHRI. "Microbial protease encoding genes in soil: diversity, abundance and enzymatic activity". Doctoral thesis, 2016. http://hdl.handle.net/2158/1040253.
Texto completoSu, Xun Zheng y 蘇訓正. "Cloning and sequence analysis of the gene encoding the protease of vibrio parahaemolyticus". Thesis, 1994. http://ndltd.ncl.edu.tw/handle/85027532088389443602.
Texto completoYu, Mei Xuan y 余美萱. "Expression and characterization of the gene encoding the extracellular protease of vibrio parahemolyticus". Thesis, 1995. http://ndltd.ncl.edu.tw/handle/41066787887294982987.
Texto completoLin, Tzu-Jay y 林子傑. "Characterization and sequences analysis on the gene prtS1 encoding serine protease of Aeromonas hydrophila". Thesis, 2000. http://ndltd.ncl.edu.tw/handle/78571215317033041633.
Texto completo國立臺灣大學
農業化學研究所
88
Aeromonas hydrophila and related aeromonads are gram negative, facultatively anaerobic fresh water bacteria, many strains of which are pathogens of humans and animals. The pathogenicity may involve with several extracellular enzymes including haemolysins, lipase, and protease. It has been suggested that proteolytic enzymes produced by A. hydrophila may play an important role in invasiveness and in establishment of infection by such as overcoming initial host defense and providing nutrients for cell proliferation. During further study, we have cloned and sequenced a proteolytic gene prtS1 from clinical strain A. hydrophila CKH29. In this study we characterized the gene product of prtS1. prtS1 can be translated into a 453 a.a. protein which displays high homology with E. coli HtrA/DegQ/DegS family. PrtS1 was overexpressed in E.coli with a multicopy plasmid pUC18, after expression, it can be translocated into periplasma by postulated recognition of E. coli leader peptidase, but most gene product remained in cytosol after translation. Purification of PrtS1 was proceeded by ammonium sulfate precipitation, following of ion-exchge and gel filtration fractionation. The molecular weight of PrtS1 was estimated as 45 kD and 41 kD by SDS PAGE and 378 kD by CL-6B elution analysis, according to these results, it is predicted that PrtS1 can form an octomer by oligomerization after protein synthesized and achieved most proteolytic activity. The PrtS1 protein was shown to be a specific endopeptidase could be inhibited by PMSF, it showed high temperature stability, suggesting that PrtS1 is a thermostable serine protease. The optimal reaction pH and temperature with casein as substrate was pH 8.0 and 45℃. Inorganic ion Zn2+ showed inhibition to proteolytic activity of PrtS1, in contrast, the activity of PrtS1 was increased by Mg2+and Ca2+. Towards the N-termial near middle of PrtS1 amino sequences shows serine protease catalytic triad and GNSGGAL motif, PrtS1 may involve putative PDZ domains behind the catalytic domain, which may in response to its multi-function.
Capítulos de libros sobre el tema "Protease encoding genes"
Mulks, M. H., D. A. Simpson y R. J. Shoberg. "Restriction site polymorphism in genes encoding type 2 but not type 1 gonococcal IgAl proteases". En Gonococci and Meningococci, 419–26. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1383-7_67.
Texto completoHershberger, R. J., C. Mueller, H. K. Gershenfeld y I. L. Weissman. "A Serine Protease-Encoding Gene That Marks Activated Cytotoxic T Cells In Vivo and In Vitro". En Current Topics in Microbiology and Immunology, 81–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73911-8_7.
Texto completoSama, Babru, Tom Boone, Barbara Karan, Kenneth Chen, Raj Sachdev y Tsutomo Arakawa. "Cloning and Expression of the Gene Encoding a Novel Proteinase from TritiraChium Album Limber". En Advances in Experimental Medicine and Biology, 95–104. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0319-0_10.
Texto completoTakeuchi, M., K. Ogura, T. Hamamoto y Y. Kobayashi. "Molecular Cloning and Sequence Analysis of a Gene Encoding an Aspartic Proteinase from Aspergillus Oryzae". En Aspartic Proteinases, 577–80. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1871-6_77.
Texto completoJayagoudar, Santoshkumar, Ch Ramesh, Pradeep Kumar, Aditya Banyal, Bhagwan Rekadwad, Ramchander Merugu, Tiina Nõges y Rahul Kumar. "Thermophilic Fungi and their Applications in Biotechnology". En Mycology: Current and Future Developments, 359–83. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815040340122040023.
Texto completoA. Elkonin, Lev, Valery M. Panin, Odissey A. Kenzhegulov y Saule Kh. Sarsenova. "RNAi-Mutants of Sorghum bicolor (L.) Moench with Improved Digestibility of Seed Storage Proteins". En Grain and Seed Proteins Functionality [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96204.
Texto completoGrant, Seth G. N. "Synaptic Disease in Psychiatry". En Neurobiology of Mental Illness, editado por Pamela Sklar, 311–21. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199934959.003.0024.
Texto completoPrimrose, Sandy B. "Tracking Horizontal Gene Transfer: Staphylococcus aureus". En Microbiology of Infectious Disease, 124–32. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780192863843.003.0016.
Texto completoI. Kane, Emma y Donald E. Spratt. "New Discoveries on the Roles of “Other” HECT E3 Ubiquitin Ligases in Disease Development". En Ubiquitin - Proteasome Pathway. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.91770.
Texto completoRavichandiran, Nerethika, Muneesh Kumar Barman, Sai Tejaswi Lavuri, Manjita Srivastava, Shalini Sakthivel, Meenakshi Singh, Kailash Chand, Subash C. Sonkar y Prudhvilal Bhukya. "Precision Medicine in Cancer". En Handbook of Research on Advancements in Cancer Therapeutics, 433–66. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-6530-8.ch015.
Texto completoActas de conferencias sobre el tema "Protease encoding genes"
Pannekoek, H., M. Linders, J. Keijer, H. Veerman, H. Van Heerikhuizen y D. J. Loskutoff. "THE STRUCTURE OF THE HUMAN ENDOTHELIAL PLASMINOGEN ACTIVATOR INHIBITOR (PAI-1) GENE: NON-RANDOM POSITIONING OF INTRONS". En XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644767.
Texto completoO'hara, Patrick J., Frank A. Grant, A. Betty, J. Haldmen y Mark J. Murray. "Structure of the Human Factor VII Gene". En XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643786.
Texto completoPannekok, H., A. J. Van Zonneveid, C. J. M. de vries, M. E. MacDonald, H. Veerman y F. Blasi. "FUNCTIONAL PROPERTIES OF DELETION-MUTANTS OF TISSUE-TYPE PLASMINOGEN ACTIVATOR". En XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643724.
Texto completode Vries, C. J. M., N. K. Veerman y H. Pannekoek. "ARTIFICIAL EXON SHUFFLING: CONSTRUCTION OF HYBRID cDNAS CONTAINING DOMAINS OF TISSUE-TYPE PLASMINOGEN ACTIVATOR (T-PA) AND UROKINASE (u-PA)". En XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643940.
Texto completoGeddes, V. A., G. V. Louie, G. D. Brayer y R. T. A. MacGillivray. "MOLECULAR BASIS OF HEMOPHILIA B: IDENTIFICATION OF THE DEFECT IN FACTOR IX VANCOUVER". En XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643872.
Texto completoInformes sobre el tema "Protease encoding genes"
Barkan, Alice y Zach Adam. The Role of Proteases in Regulating Gene Expression and Assembly Processes in the Chloroplast. United States Department of Agriculture, enero de 2003. http://dx.doi.org/10.32747/2003.7695852.bard.
Texto completoOhad, Itzhak y Himadri Pakrasi. Role of Cytochrome B559 in Photoinhibition. United States Department of Agriculture, diciembre de 1995. http://dx.doi.org/10.32747/1995.7613031.bard.
Texto completoAdam, Zach y Eran Pichersky. Degradation of Abnormal Proteins in Chloroplasts of Higher Plants. United States Department of Agriculture, agosto de 1994. http://dx.doi.org/10.32747/1994.7568768.bard.
Texto completoManulis-Sasson, Shulamit, Christine D. Smart, Isaac Barash, Laura Chalupowicz, Guido Sessa y Thomas J. Burr. Clavibacter michiganensis subsp. michiganensis-tomato interactions: expression and function of virulence factors, plant defense responses and pathogen movement. United States Department of Agriculture, febrero de 2015. http://dx.doi.org/10.32747/2015.7594405.bard.
Texto completoLers, Amnon, E. Lomaniec, S. Burd, A. Khalchitski, L. Canetti y Pamela J. Green. Analysis of Senescence Inducible Ribonuclease in Tomato: Gene Regulation and Function. United States Department of Agriculture, febrero de 2000. http://dx.doi.org/10.32747/2000.7570563.bard.
Texto completoLers, Amnon y Pamela J. Green. LX Senescence-Induced Ribonuclease in Tomato: Function and Regulation. United States Department of Agriculture, septiembre de 2003. http://dx.doi.org/10.32747/2003.7586455.bard.
Texto completoHarman, Gary E. y Ilan Chet. Enhancement of plant disease resistance and productivity through use of root symbiotic fungi. United States Department of Agriculture, julio de 2008. http://dx.doi.org/10.32747/2008.7695588.bard.
Texto completo