Literatura académica sobre el tema "Propositional Quantifiers"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Propositional Quantifiers".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Propositional Quantifiers"
FINE, KIT. "Propositional quantifiers in modal logic1". Theoria 36, n.º 3 (11 de febrero de 2008): 336–46. http://dx.doi.org/10.1111/j.1755-2567.1970.tb00432.x.
Texto completoGolińska-Pilarek, Joanna y Taneli Huuskonen. "Non-Fregean Propositional Logic with Quantifiers". Notre Dame Journal of Formal Logic 57, n.º 2 (2016): 249–79. http://dx.doi.org/10.1215/00294527-3470547.
Texto completoArtemov, Sergei N. y Lev D. Beklemishev. "On propositional quantifiers in provability logic." Notre Dame Journal of Formal Logic 34, n.º 3 (junio de 1993): 401–19. http://dx.doi.org/10.1305/ndjfl/1093634729.
Texto completoLeivant, Daniel. "Propositional Dynamic Logic with Program Quantifiers". Electronic Notes in Theoretical Computer Science 218 (octubre de 2008): 231–40. http://dx.doi.org/10.1016/j.entcs.2008.10.014.
Texto completoCrawford, Sean. "Quantifiers and propositional attitudes: Quine revisited". Synthese 160, n.º 1 (15 de febrero de 2007): 75–96. http://dx.doi.org/10.1007/s11229-006-9080-6.
Texto completoO'Hearn, Peter W. y David J. Pym. "The Logic of Bunched Implications". Bulletin of Symbolic Logic 5, n.º 2 (junio de 1999): 215–44. http://dx.doi.org/10.2307/421090.
Texto completoZhang, Cheng. "How to Deduce the Other 91 Valid Aristotelian Modal Syllogisms from the Syllogism IAI-3". Applied Science and Innovative Research 7, n.º 1 (27 de enero de 2023): p46. http://dx.doi.org/10.22158/asir.v7n1p46.
Texto completoPascucci, Matteo. "Propositional quantifiers in labelled natural deduction for normal modal logic". Logic Journal of the IGPL 27, n.º 6 (25 de abril de 2019): 865–94. http://dx.doi.org/10.1093/jigpal/jzz008.
Texto completoMontagna, Franco. "Δ-core Fuzzy Logics with Propositional Quantifiers, Quantifier Elimination and Uniform Craig Interpolation". Studia Logica 100, n.º 1-2 (9 de febrero de 2012): 289–317. http://dx.doi.org/10.1007/s11225-012-9379-x.
Texto completoRönnedal, Daniel. "The Moral Law and The Good in Temporal Modal Logic with Propositional Quantifiers". Australasian Journal of Logic 17, n.º 1 (7 de abril de 2020): 22. http://dx.doi.org/10.26686/ajl.v17i1.5674.
Texto completoTesis sobre el tema "Propositional Quantifiers"
Reggio, Luca. "Quantifiers and duality". Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC210/document.
Texto completoThe unifying theme of the thesis is the semantic meaning of logical quantifiers. In their basic form quantifiers allow to state theexistence, or non-existence, of individuals satisfying a property. As such, they encode the richness and the complexity of predicate logic, as opposed to propositional logic. We contribute to the semantic understanding of quantifiers, from the viewpoint of duality theory, in three different areas of mathematics and theoretical computer science. First, in formal language theory through the syntactic approach provided by logic on words. Second, in intuitionistic propositional logic and in the study of uniform interpolation. Third, in categorical topology and categorical semantics for predicate logic
Walton, Matthew. "First-order lax logic : a framework for abstraction, constraints and refinement". Thesis, University of Sheffield, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299599.
Texto completoLiétard, Ludovic. "Contribution a l'interrogation flexible de bases de donnees : etude des propositions quantifiees floues". Rennes 1, 1995. http://www.theses.fr/1995REN10125.
Texto completoDöcker, Janosch Otto [Verfasser]. "Placing problems from phylogenetics and (quantified) propositional logic in the polynomial hierarchy / Janosch Otto Döcker". Tübingen : Universitätsbibliothek Tübingen, 2021. http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1187027.
Texto completoLetombe, Florian. "De la validité des formules booléennes quantifiées : étude de complexité et exploitation de classes traitables au sein d'un prouveur QBF". Artois, 2005. http://www.theses.fr/2005ARTO0407.
Texto completoThis thesis is centered on QBF, the validity problem for quantified Boolean formulae: given a formula of the form Σ = ∀y1 Ǝx1. . . ∀yn Ǝxn. ø where ø is a propositional formula built on {x1, y1,. . . , xn, yn} (the matrix of Σ), is it the case that for each assignment of a truth value to y1 in ø, there exists an assignment of a truth value to x1 in ø,. . . , for each assignment of a truth value to yn in ø, there exists an assignment of a truth value to xn in ø that makes ø valid ? Since QBF is computationally hard (PSPACE-complete), it is important to point out some specific cases for which the practical solving of QBF could be achieved. In this thesis, we have considered some restrictions of QBF based on the matrices of instances. Our main purpose was (1) to identify the complexity of QBF for some restrictions not considered so far and (2) to explore how to take advantage of polynomial classes for QBF within a general QBF solver in order to increase its efficiency. As to the first point, we have shown that QBF, when restricted to the target fragments for knowledge compilation studied in (Darwiche & Marquis 2002), remain typically PSPACE-complete. We have shown a close connexion between this study and the compilability issue for QBF. As to the second point, we have presented a new branching heuristics Δ which aims at promoting the generation of quantified renamable Horn formulae into the search-tree developed by a Q-DPLL procedure for QBF. We have obtained experimental results showing that, in practice, state-of-the-art QBF solvers, except our solver Qbfl, are unable to solve quantified Horn instances or quantified renamable Horn instances of medium size. This observation is sufficient to show the interest of our approach. Our experiments have also shown the heuristics Δ to improve the efficiency of Qbfl, even if this solver does not appear as one of the best QBF solvers at this time
Da, Mota Benoit. "Formules booléennes quantifiées : transformations formelles et calculs parallèles". Phd thesis, Université d'Angers, 2010. http://tel.archives-ouvertes.fr/tel-00578083.
Texto completoSlama, Olfa. "Flexible querying of RDF databases : a contribution based on fuzzy logic". Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S089/document.
Texto completoThis thesis concerns the definition of a flexible approach for querying both crisp and fuzzy RDF graphs. This approach, based on the theory of fuzzy sets, makes it possible to extend SPARQL which is the W3C-standardised query language for RDF, so as to be able to express i) fuzzy user preferences on data (e.g., the release year of an album is recent) and on the structure of the data graph (e.g., the path between two friends is required to be short) and ii) more complex user preferences, namely, fuzzy quantified statements (e.g., most of the albums that are recommended by an artist, are highly rated and have been created by a young friend of this artist). We performed some experiments in order to study the performances of this approach. The main objective of these experiments was to show that the extra cost due to the introduction of fuzziness remains limited/acceptable. We also investigated, in a more general framework, namely graph databases, the issue of integrating the same type of fuzzy quantified statements in a fuzzy extension of Cypher which is a declarative language for querying (crisp) graph databases. Some experimental results are reported and show that the extra cost induced by the fuzzy quantified nature of the queries also remains very limited
Johannesson, Eric. "Analyticity, Necessity and Belief : Aspects of two-dimensional semantics". Doctoral thesis, Stockholms universitet, Filosofiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-141565.
Texto completoPASCUCCI, Matteo. "Modal logics with propositional constants". Doctoral thesis, 2016. http://hdl.handle.net/11562/944281.
Texto completoThis dissertation aims at providing a unified treatment of propositional constants in modal logic. Languages enriched with constants have been used at least from the Fifties, but a systematic study of them is still not available.The main contribution consists in the development of a semantic approach based on structures with sets of possible interpretations for propositional constants, called specific restrictions; such structures are compared with those in which every constant has a fixed interpretation, usually adopted in the literature. We show that the presence of specific restrictions allows one to define the notion of strict range of a formula, that turns out to be important for model-theoretic purposes. Furthermore, we use the semantic approach here introduced to develop systems of temporal logic whose language includes primitive operators of contingency, showing that propositional constants are useful to obtain characterization results with reference to different classes of temporal frames. Finally, we move from languages with propositional constants to languages with propositional quantifiers (the latter being intended as a generalization of the former) and analyse their proof theory in natural deduction calculi.
Pan, Guoqiang. "Complexity and structural heuristics for propositional and quantified satisfiability". Thesis, 2007. http://hdl.handle.net/1911/20686.
Texto completoLibros sobre el tema "Propositional Quantifiers"
Quantifiers, propositions, and identity: Admissible semantics for quantified modal and substructural logics. Cambridge: Cambridge University Press, 2011.
Buscar texto completoJ, Cresswell M. Semantic indexicality. Dordrecht: Kluwer Academic Publishers, 1996.
Buscar texto completoGoldblatt, Robert. Quantifiers, Propositions and Identity: Admissible Semantics for Quantified Modal and Substructural Logics. Cambridge University Press, 2012.
Buscar texto completoGoldblatt, Robert. Quantifiers, Propositions and Identity: Admissible Semantics for Quantified Modal and Substructural Logics. Cambridge University Press, 2011.
Buscar texto completoGoldblatt, Robert. Quantifiers, Propositions and Identity: Admissible Semantics for Quantified Modal and Substructural Logics. Cambridge University Press, 2011.
Buscar texto completoMorioka, Tsuyoshi. Logical approaches to the complexity of search problems: Proof complexity, quantified propositional calculus, and bounded arithmetic. 2005.
Buscar texto completoMeyer, Ulrich. Time and Modality. Editado por Craig Callender. Oxford University Press, 2011. http://dx.doi.org/10.1093/oxfordhb/9780199298204.003.0005.
Texto completoKishida, Kohei. Categories and Modalities. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198748991.003.0009.
Texto completoJ, Cresswell M. Semantic Indexicality. Springer London, Limited, 2013.
Buscar texto completoCapítulos de libros sobre el tema "Propositional Quantifiers"
Lokhorst, Gert-Jan C. "Propositional Quantifiers in Deontic Logic". En Deontic Logic and Artificial Normative Systems, 201–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11786849_17.
Texto completoEbner, Gabriel, Jasmin Blanchette y Sophie Tourret. "A Unifying Splitting Framework". En Automated Deduction – CADE 28, 344–60. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79876-5_20.
Texto completoKroening, Daniel y Ofer Strichman. "From Propositional to Quantifier-Free Theories". En Decision Procedures, 59–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-50497-0_3.
Texto completoBrauer, Jörg y Andy King. "Approximate Quantifier Elimination for Propositional Boolean Formulae". En Lecture Notes in Computer Science, 73–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20398-5_7.
Texto completoGoldberg, Eugene y Panagiotis Manolios. "Software for Quantifier Elimination in Propositional Logic". En Mathematical Software – ICMS 2014, 291–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44199-2_45.
Texto completoBesnard, Philippe, Torsten Schaub, Hans Tompits y Stefan Woltran. "Representing Paraconsistent Reasoning via Quantified Propositional Logic". En Inconsistency Tolerance, 84–118. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-30597-2_4.
Texto completoBaaz, Matthias, Christian Fermüller y Helmut Veith. "An Analytic Calculus for Quantified Propositional Gödel Logic". En Lecture Notes in Computer Science, 112–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/10722086_12.
Texto completoFrench, Tim. "Decidability of Propositionally Quantified Logics of Knowledge". En Lecture Notes in Computer Science, 352–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-24581-0_30.
Texto completoSnelgrove, Todd. "Implementing pricing strategies via quantified value propositions". En Pricing Strategy Implementation, 136–41. Abingdon, Oxon; New York, NY: Routledge, 2020.: Routledge, 2019. http://dx.doi.org/10.4324/9780429446849-14.
Texto completoAyari, Abdelwaheb y David Basin. "Qubos: Deciding Quantified Boolean Logic Using Propositional Satisfiability Solvers". En Formal Methods in Computer-Aided Design, 187–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36126-x_12.
Texto completoActas de conferencias sobre el tema "Propositional Quantifiers"
Férée, Hugo y Sam van Gool. "Formalizing and Computing Propositional Quantifiers". En CPP '23: 12th ACM SIGPLAN International Conference on Certified Programs and Proofs. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3573105.3575668.
Texto completoBo, Chen, Wu Cheng, Zhang Bing, Ma Changhui y Sui Yuefei. "Quantified Propositional Logic and Translations". En 2017 13th International Conference on Semantics, Knowledge and Grids (SKG). IEEE, 2017. http://dx.doi.org/10.1109/skg.2017.00010.
Texto completoTamani, Nouredine y Yacine Ghamri-Doudane. "On Quantitative Interpretation of Fuzzy Quantified Propositions for User Preference Handling". En 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2018. http://dx.doi.org/10.1109/fuzz-ieee.2018.8491661.
Texto completoOkamoto, Wataru, Shun'ichi Tano, Atsushi Inoue y Rvosuke Fujioka. "Inference results for fuzzy quantified natural language propositions qualified by false". En 2007 IEEE International Conference on Systems, Man and Cybernetics. IEEE, 2007. http://dx.doi.org/10.1109/icsmc.2007.4413862.
Texto completoOkamoto, W., S. Tano, A. Inoue y R. Fujioka. "Rule-based Inference Method for Fuzzy-Quantified and Truth-Qualified Natural Language Propositions". En 2006 IEEE International Conference on Fuzzy Systems. IEEE, 2006. http://dx.doi.org/10.1109/fuzzy.2006.1681998.
Texto completoOkamoto, Wataru, Shun'ichi Tano, Atsushi Inoue y Ryosuke Fujioka. "A generalized four-step inference method for fuzzy quantified and truth-qualified natural language propositions". En 2010 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2010. http://dx.doi.org/10.1109/fuzzy.2010.5584544.
Texto completoWataru Okamoto, Shun'ichi Tano, Toshiharu Iwatani y Atsushi Inoue. "An inference method for fuzzy quantified natural language propositions based on new interpretation of truth qualification". En 2008 IEEE 16th International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2008. http://dx.doi.org/10.1109/fuzzy.2008.4630380.
Texto completoCaleiro, Carlos, Filipe Casal y Andreia Mordido. "Classical Generalized Probabilistic Satisfiability". En Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/126.
Texto completoLee, Nian-Ze, Yen-Shi Wang y Jie-Hong R. Jiang. "Solving Stochastic Boolean Satisfiability under Random-Exist Quantification". En Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/96.
Texto completoYang, Chun-Lin, Nandan Shettigar y C. Steve Suh. "A Proposition for Describing Real-World Network Dynamics". En ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-73360.
Texto completo