Literatura académica sobre el tema "Properly coloured subgraph"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Properly coloured subgraph".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Properly coloured subgraph"

1

Axenovich, Maria, Tao Jiang y Z. Tuza. "Local Anti-Ramsey Numbers of Graphs". Combinatorics, Probability and Computing 12, n.º 5-6 (noviembre de 2003): 495–511. http://dx.doi.org/10.1017/s0963548303005868.

Texto completo
Resumen
A subgraph H in an edge-colouring is properly coloured if incident edges of H are assigned different colours, and H is rainbow if no two edges of H are assigned the same colour. We study properly coloured subgraphs and rainbow subgraphs forced in edge-colourings of complete graphs in which each vertex is incident to a large number of colours.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

KOSTOCHKA, ALEXANDR y MATTHEW YANCEY. "Large Rainbow Matchings in Edge-Coloured Graphs". Combinatorics, Probability and Computing 21, n.º 1-2 (2 de febrero de 2012): 255–63. http://dx.doi.org/10.1017/s0963548311000605.

Texto completo
Resumen
Arainbow subgraphof an edge-coloured graph is a subgraph whose edges have distinct colours. Thecolour degreeof a vertexvis the number of different colours on edges incident withv. Wang and Li conjectured that fork≥ 4, every edge-coloured graph with minimum colour degreekcontains a rainbow matching of size at least ⌈k/2⌉. A properly edge-colouredK4has no such matching, which motivates the restrictionk≥ 4, but Li and Xu proved the conjecture for all other properly coloured complete graphs. LeSaulnier, Stocker, Wenger and West showed that a rainbow matching of size ⌊k/2⌋ is guaranteed to exist, and they proved several sufficient conditions for a matching of size ⌈k/2⌉. We prove the conjecture in full.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Markström, Klas, Andrew Thomason y Peter Wagner. "Properly Edge-Coloured Subgraphs in Colourings of Bounded Degree". Graphs and Combinatorics 27, n.º 2 (1 de septiembre de 2010): 243–49. http://dx.doi.org/10.1007/s00373-010-0970-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Alon, Noga, Alexey Pokrovskiy y Benny Sudakov. "Random subgraphs of properly edge-coloured complete graphs and long rainbow cycles". Israel Journal of Mathematics 222, n.º 1 (octubre de 2017): 317–31. http://dx.doi.org/10.1007/s11856-017-1592-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

JOUVE, FLORENT y JEAN-SÉBASTIEN SERENI. "EXPANDER GRAPHS AND SIEVING IN COMBINATORIAL STRUCTURES". Journal of the Australian Mathematical Society 105, n.º 1 (11 de enero de 2018): 79–102. http://dx.doi.org/10.1017/s1446788717000234.

Texto completo
Resumen
We prove a general large-sieve statement in the context of random walks on subgraphs of a given graph. This can be seen as a generalization of previously known results where one performs a random walk on a group enjoying a strong spectral gap property. In such a context the point is to exhibit a strong uniform expansion property for a suitable family of Cayley graphs on quotients. In our combinatorial approach, this is replaced by a result of Alon–Roichman about expanding properties of random Cayley graphs. Applying the general setting we show, for instance, that with high probability (in a strong explicit sense) random coloured subsets of integers contain monochromatic (nonempty) subsets summing to $0$, and that a random colouring of the edges of a complete graph contains a monochromatic triangle.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Clemens, Dennis, Anita Liebenau y Damian Reding. "On minimal Ramsey graphs and Ramsey equivalence in multiple colours". Combinatorics, Probability and Computing 29, n.º 4 (9 de marzo de 2020): 537–54. http://dx.doi.org/10.1017/s0963548320000036.

Texto completo
Resumen
AbstractFor an integer q ⩾ 2, a graph G is called q-Ramsey for a graph H if every q-colouring of the edges of G contains a monochromatic copy of H. If G is q-Ramsey for H yet no proper subgraph of G has this property, then G is called q-Ramsey-minimal for H. Generalizing a statement by Burr, Nešetřil and Rödl from 1977, we prove that, for q ⩾ 3, if G is a graph that is not q-Ramsey for some graph H, then G is contained as an induced subgraph in an infinite number of q-Ramsey-minimal graphs for H as long as H is 3-connected or isomorphic to the triangle. For such H, the following are some consequences.For 2 ⩽ r < q, every r-Ramsey-minimal graph for H is contained as an induced subgraph in an infinite number of q-Ramsey-minimal graphs for H.For every q ⩾ 3, there are q-Ramsey-minimal graphs for H of arbitrarily large maximum degree, genus and chromatic number.The collection $\{\mathcal M_q(H) \colon H \text{ is 3-connected or } K_3\}$ forms an antichain with respect to the subset relation, where $\mathcal M_q(H)$ denotes the set of all graphs that are q-Ramsey-minimal for H.We also address the question of which pairs of graphs satisfy $\mathcal M_q(H_1)=\mathcal M_q(H_2)$ , in which case H1 and H2 are called q-equivalent. We show that two graphs H1 and H2 are q-equivalent for even q if they are 2-equivalent, and that in general q-equivalence for some q ⩾ 3 does not necessarily imply 2-equivalence. Finally we indicate that for connected graphs this implication may hold: results by Nešetřil and Rödl and by Fox, Grinshpun, Liebenau, Person and Szabó imply that the complete graph is not 2-equivalent to any other connected graph. We prove that this is the case for an arbitrary number of colours.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Haxell, P. E., Y. Kohayakawa y T. Łuczak. "The Induced Size-Ramsey Number of Cycles". Combinatorics, Probability and Computing 4, n.º 3 (septiembre de 1995): 217–39. http://dx.doi.org/10.1017/s0963548300001619.

Texto completo
Resumen
For a graph H and an integer r ≥ 2, the induced r-size-Ramsey number of H is defined to be the smallest integer m for which there exists a graph G with m edges with the following property: however one colours the edges of G with r colours, there always exists a monochromatic induced subgraph H′ of G that is isomorphic to H. This is a concept closely related to the classical r-size-Ramsey number of Erdős, Faudree, Rousseau and Schelp, and to the r-induced Ramsey number, a natural notion that appears in problems and conjectures due to, among others, Graham and Rödl, and Trotter. Here, we prove a result that implies that the induced r-size-Ramsey number of the cycle Cℓ is at most crℓ for some constant cr that depends only upon r. Thus we settle a conjecture of Graham and Rödl, which states that the above holds for the path Pℓ of order ℓ and also generalise in part a result of Bollobás, Burr and Reimer that implies that the r-size Ramsey number of the cycle Cℓ is linear in ℓ Our method of proof is heavily based on techniques from the theory of random graphs and on a variant of the powerful regularity lemma of Szemerédi.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Janssen, Jeannette, Rogers Mathew y Deepak Rajendraprasad. "Partial List Colouring of Certain Graphs". Electronic Journal of Combinatorics 22, n.º 3 (20 de septiembre de 2015). http://dx.doi.org/10.37236/4283.

Texto completo
Resumen
The partial list colouring conjecture due to Albertson, Grossman, and Haas (2000) states that for every $s$-choosable graph $G$ and every assignment of lists of size $t$, $1 \leq t \leq s$, to the vertices of $G$ there is an induced subgraph of $G$ on at least $\frac{t|V(G)|}{s}$ vertices which can be properly coloured from these lists. In this paper, we show that the partial list colouring conjecture holds true for certain classes of graphs like claw-free graphs, graphs with chromatic number at least $\frac{|V(G)|-1}{2}$, chordless graphs, and series-parallel graphs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Scott, Alex y Paul Seymour. "Induced Subgraphs of Graphs with Large Chromatic Number IX: Rainbow Paths". Electronic Journal of Combinatorics 24, n.º 2 (30 de junio de 2017). http://dx.doi.org/10.37236/6768.

Texto completo
Resumen
We prove that for all integers $\kappa, s\ge 0$ there exists $c$ with the following property. Let $G$ be a graph with clique number at most $\kappa$ and chromatic number more than $c$. Then for every vertex-colouring (not necessarily optimal) of $G$, some induced subgraph of $G$ is an $s$-vertex path, and all its vertices have different colours. This extends a recent result of Gyárfás and Sárközy (2016) who proved the same for graphs $G$ with $\kappa=2$ and girth at least five.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Caro, Yair, Adriana Hansberg, Josef Lauri y Christina Zarb. "On Zero-Sum Spanning Trees and Zero-Sum Connectivity". Electronic Journal of Combinatorics 29, n.º 1 (28 de enero de 2022). http://dx.doi.org/10.37236/10289.

Texto completo
Resumen
We consider $2$-colourings $f : E(G) \rightarrow \{ -1 ,1 \}$ of the edges of a graph $G$ with colours $-1$ and $1$ in $\mathbb{Z}$. A subgraph $H$ of $G$ is said to be a zero-sum subgraph of $G$ under $f$ if $f(H) := \sum_{e\in E(H)} f(e) =0$. We study the following type of questions, in several cases obtaining best possible results: Under which conditions on $|f(G)|$ can we guarantee the existence of a zero-sum spanning tree of $G$? The types of $G$ we consider are complete graphs, $K_3$-free graphs, $d$-trees, and maximal planar graphs. We also answer the question of when any such colouring contains a zero-sum spanning path or a zero-sum spanning tree of diameter at most $3$, showing in passing that the diameter-$3$ condition is best possible. Finally, we give, for $G = K_n$, a sharp bound on $|f(K_n)|$ by which an interesting zero-sum connectivity property is forced, namely that any two vertices are joined by a zero-sum path of length at most $4$. One feature of this paper is the proof of an Interpolation Lemma leading to a Master Theorem from which many of the above results follow and which can be of independent interest.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Properly coloured subgraph"

1

Ouyang, Qiancheng. "Some colouring problems in edge/vertex-coloured graphs : Structural and extremal studies". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG060.

Texto completo
Resumen
La coloration de graphes est l'un des sujets les plus connus, populaires et largement étudiés dans le domaine de la théorie des graphes, avec une vaste littérature comprenant des approches provenant de nombreux domaines ainsi que de nombreux problèmes qui sont encore ouverts et étudiés par divers mathématiciens et informaticiens à travers le monde. Le Problème des Quatre Couleurs, à l'origine de l'étude de la coloration des graphes, a été l'un des problèmes centraux en théorie des graphes au siècle dernier. Il demande s'il est possible de colorer proprement chaque graphe planaire avec quatre couleurs. Malgré son origine théorique, la coloration des graphes a trouvé de nombreuses applications pratiques telles que la planification, les problèmes d'assignation de fréquences, la segmentation, etc. Le Problème des Quatre Couleurs est l'un des problèmes importants parmi de nombreux problèmes de la théorie des graphes chromatiques, à partir duquel de nombreuses variantes et généralisations ont été proposées. Tout d'abord, dans cette thèse, nous visons à optimiser la stratégie de coloration des sommets de graphes et d'hypergraphes avec certaines contraintes données, en combinant le concept de coloration propre et d'élément représentatif de certains sous-ensembles de sommets. D'autre part, en fonction du sujet à colorer, une grande quantité de recherches et de problèmes de graphes à arêtes colorées ont émergé, avec des applications importantes en biologie et en technologies web. Nous fournissons quelques résultats analogues pour certaines questions de connectivité, afin de décrire des graphes dont les arêtes sont attribuées suffisamment de couleurs, garantissant ainsi des arbres couvrants ou des cycles ayant une structure chromatique spécifique
Graph colouring is one of the best known, popular and extensively researched subject in the field of graph theory, having a wide literature with approaches from many domains and a lot of problems, which are still open and studied by various mathematicians and computer scientists along the world. The Four Colour Problem, originating the study of graph colouring, was one of the central problem in graph theory in the last century, which asks if it is possible to colour every planar graph properly by four colours. Despite the theoretical origin, the graph colouring has found many applications in practice like scheduling, frequency assignment problems, segmentation, etc. The Four Colour Problem is a significant one among many problems in chromatic graph theory, from which many variants and generalizations have been proposed. Firstly, in this thesis, we aim to optimize the strategy to colour the vertex of graphs and hypergraphs with some given constraints, which combines the concept of proper colouring and representative element of some vertex subsets. On the other hand, according to the subject to be coloured, a large amount of research and problems of edge-coloured graphs have emerged, which have important applications to biology and web technologies. We provide some analogous results for some connectivity issues—to describe graphs whose edges are assigned enough colours, that guarantee spanning trees or cycles of a specific chromatic structure
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía