Literatura académica sobre el tema "Propagation favorable"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Propagation favorable".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Propagation favorable"
Makarewicz, Rufin y Katsuko Masuda. "Highway noise under favorable conditions of generation and propagation." Journal of the Acoustical Society of Japan (E) 19, n.º 3 (1998): 181–86. http://dx.doi.org/10.1250/ast.19.181.
Texto completoMasouros, Christos y Michail Matthaiou. "Space-Constrained Massive MIMO: Hitting the Wall of Favorable Propagation". IEEE Communications Letters 19, n.º 5 (mayo de 2015): 771–74. http://dx.doi.org/10.1109/lcomm.2015.2409832.
Texto completoCheng, Yifeng, Lu Wang y Tim Li. "Causes of Interdecadal Increase in the Intraseasonal Rainfall Variability over Southern China around the Early 1990s". Journal of Climate 33, n.º 21 (1 de noviembre de 2020): 9481–96. http://dx.doi.org/10.1175/jcli-d-20-0047.1.
Texto completoAnarakifirooz, Elham y Sergey Loyka. "Favorable Propagation for Massive MIMO With Circular and Cylindrical Antenna Arrays". IEEE Wireless Communications Letters 11, n.º 3 (marzo de 2022): 458–62. http://dx.doi.org/10.1109/lwc.2021.3132255.
Texto completoFathy, Abdallah, Fatma Newagy y Wagdy Refaat Anis. "Performance Evaluation of UWB Massive MIMO Channels With Favorable Propagation Features". IEEE Access 7 (2019): 147010–20. http://dx.doi.org/10.1109/access.2019.2946335.
Texto completoLaBelle, J. "High-latitude propagation studies using a meridional chain of LF/MF/HF receivers". Annales Geophysicae 22, n.º 5 (8 de abril de 2004): 1705–18. http://dx.doi.org/10.5194/angeo-22-1705-2004.
Texto completoBashkuev, Yuri y Mikhail Dembelov. "Modeling of the Propagation of LF–MF–SF Bands Electromagnetic Waves on Arctic Paths". Infocommunications and Radio Technologies 6, n.º 1 (18 de agosto de 2023): 53–62. http://dx.doi.org/10.29039/2587-9936.2023.06.1.05.
Texto completoNuss, Wendell A. "Synoptic-Scale Structure and the Character of Coastally Trapped Wind Reversals". Monthly Weather Review 135, n.º 1 (1 de enero de 2007): 60–81. http://dx.doi.org/10.1175/mwr3267.1.
Texto completoChen, Zheng y Emil Bjornson. "Channel Hardening and Favorable Propagation in Cell-Free Massive MIMO With Stochastic Geometry". IEEE Transactions on Communications 66, n.º 11 (noviembre de 2018): 5205–19. http://dx.doi.org/10.1109/tcomm.2018.2846272.
Texto completoLoyka, Sergey y Mahdi Khojastehnia. "Comments on “On Favorable Propagation in Massive MIMO Systems and Different Antenna Configurations”". IEEE Access 7 (2019): 185369–72. http://dx.doi.org/10.1109/access.2019.2960025.
Texto completoTesis sobre el tema "Propagation favorable"
Gholamipourfard, Roya. "Cell-Free massive MIMO receiver design and channel estimation". Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS285.
Texto completoNext generation wireless systems shall satisfy the increasing demand of higher and higher data rates at very competitive prices as well as be able to efficiently accommodate for and adapt to a huge dynamic range of services, applications, and types of devices expected in the near. Appealing architectural solutions have been leveraged on ultra-densification of antennas. Ultra-dense wireless systems envision ultra-dense distributed antenna systems (UD-DAS) based on remote distributed antennas empowered by the e-cloud. However, neither DAS nor massive MIMO technology will meet the increasing data rate demands of the next generation wireless communications due to the inter-cell interference and large quality of service (QoS) variations. To address these limitations, beyond-5G networks need to enter the cell-free (CF) paradigm, where the absence of cell boundaries mitigates the inter-cell interference and handover issues but also causes new challenges. One of the major issues in the large-scale networks such as CF massive MIMO systems is complexity at the receivers. In this regard, first part of this thesis is devoted to analyzing the favorable propagation properties of CF massive MIMO systems in asymptotic conditions. Channel state information (CSI) in massive MIMO systems, both cellular and CF, plays a major role in improving the system performance. Therefore, in the second part of this thesis, we address the pilot contamination problem in CF massive MIMO systems. Finally, in the last part of this thesis, we propose an MP algorithm based on the EP principle to iteratively conduct the Bayesian semi-blind method for channel estimation and data detection in CF massive systems
Huang, Meng. "On the Identification of Favorable Data Profile for Lithium-Ion Battery Aging Assessment with Consideration of Usage Patterns in Electric Vehicles". The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu15748487783319.
Texto completoCapítulos de libros sobre el tema "Propagation favorable"
Güray, Ersan y Recep Birgül. "Determination of Favorable Time Window for Infrared Inspection by Numerical Simulation of Heat Propagation in Concrete". En Lecture Notes in Civil Engineering, 577–91. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-64349-6_46.
Texto completoYang, Zhe y Abbas Mohammed. "Reducing Complexity and Achieving Higher Energy Efficiency in Wireless Sensor Network Communications by Using High Altitude Platforms". En Wireless Sensor Networks and Energy Efficiency, 329–38. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-0101-7.ch015.
Texto completoMwalongo, Marko y Kilavo Hassan. "Massive MIMO-Based Network Planning and Performance Evaluation for High Speed Broadband Connection in Rural Areas of Tanzania". En Advances in Electronic Government, Digital Divide, and Regional Development, 305–16. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-6471-4.ch016.
Texto completoAl-Mssallem, Muneera Q., Krishnananda P. Ingle, Gopal W. Narkhede, S. Mohan Jain, Penna Suprasanna, Gholamreza Abdi y Jameel M. Al-Khayri. "Hassawi Rice (Oryza Sativa L.) Nutraceutical Properties, In Vitro Culture and Genomics". En In Vitro Propagation and Secondary Metabolite Production from Medicinal Plants: Current Trends (Part 1), 142–68. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815165227124010010.
Texto completoKofi Osei, Isaac, Edward Adzesiwor Obodai y Denis Worlanyo Aheto. "Biofouling of the Mangrove Oyster (Crassostrea tulipa, Lamarck, 1819) Cultivation: The West African Perspective". En Agricultural Sciences. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.114324.
Texto completoFarhana, Nikhat, Ripudaman M. Singh, Mohammed Gulzar Ahmed, Thouheed Ansari, Abdul Rahamanulla, Ayesha Sultana, Treesa P. Varghese, Ashwini Somayaji y Abdullah Khan. "Seed Biology and Phytochemistry for Sustainable Future". En Seed Biology Updates [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106208.
Texto completoActas de conferencias sobre el tema "Propagation favorable"
Miller, Chelsea, Peter J. Smith, Pawel A. Dmochowski, Harsh Tataria y Andreas F. Molisch. "Favorable Propagation with User Cluster Sharing". En 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications. IEEE, 2020. http://dx.doi.org/10.1109/pimrc48278.2020.9217231.
Texto completoGholami, Roya, Laura Cottatellucci y Dirk Slock. "Favorable Propagation and Linear Multiuser Detection for Distributed Antenna Systems". En ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9053449.
Texto completoDardari, Davide. "Channel Hardening, Favorable Equalization and Propagation in Wideband Massive MIMO". En 2019 27th European Signal Processing Conference (EUSIPCO). IEEE, 2019. http://dx.doi.org/10.23919/eusipco.2019.8902768.
Texto completoZhang, Jianhua, Lei Tian, Ruijie Xu, Zhen Zhang y Jian Zhang. "Favorable Propagation with Practical Angle Distributions for mmWave Massive MIMO Systems". En 2019 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2019. http://dx.doi.org/10.1109/iccw.2019.8756994.
Texto completoAnarakifirooz, Elham y Sergey Loyka. "Favorable Propagation for Wideband Massive MIMO with Non-Uniform Linear Arrays". En 2022 17th Canadian Workshop on Information Theory (CWIT). IEEE, 2022. http://dx.doi.org/10.1109/cwit55308.2022.9817666.
Texto completoEddine Hajri, Salah, Juwendo Denis y Mohamad Assaad. "Enhancing Favorable Propagation in Cell-Free Massive MIMO Through Spatial User Grouping". En 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2018. http://dx.doi.org/10.1109/spawc.2018.8445847.
Texto completoSun, Yanliang, Lei Tian, Jianhua Zhang, Linyun Wu y Ping Zhang. "On asymptotic favorable propagation condition for massive MIMO with co-located user terminals". En 2014 International Symposium on Wireless Personal Multimedia Communications (WPMC). IEEE, 2014. http://dx.doi.org/10.1109/wpmc.2014.7014907.
Texto completoGholami, Roya, Laura Cottatellucci y Dirk Slock. "Channel Models, Favorable Propagation and MultiStage Linear Detection in Cell-Free Massive MIMO". En 2020 IEEE International Symposium on Information Theory (ISIT). IEEE, 2020. http://dx.doi.org/10.1109/isit44484.2020.9174420.
Texto completoMusgrave, Patrick F., Austin A. Phoenix, Mohammad I. Albakri y Pablo A. Tarazaga. "Generating Structure-Borne Traveling Waves Favorable for Applications". En ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/smasis2020-2225.
Texto completoPolishchuk, A. Ya, Jean Dolne, Feng Liu, M. Zevallos, B. Das y R. R. Alfano. "Fermat Photons: Paths Propagation and Imaging in Turbid Media". En Advances in Optical Imaging and Photon Migration. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/aoipm.1996.pmst14.
Texto completoInformes sobre el tema "Propagation favorable"
Rose, Luo y Minachi. ZZ44154 Circumferential Guided Waves for Defect Detection in Tar Coated Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), enero de 2008. http://dx.doi.org/10.55274/r0010958.
Texto completoSamish, Michael, K. M. Kocan y Itamar Glazer. Entomopathogenic Nematodes as Biological Control Agents of Ticks. United States Department of Agriculture, septiembre de 1992. http://dx.doi.org/10.32747/1992.7568104.bard.
Texto completo