Índice
Literatura académica sobre el tema "Prompt elastogravity signals"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Prompt elastogravity signals".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Prompt elastogravity signals"
Vallée, Martin y Kévin Juhel. "Multiple Observations of the Prompt Elastogravity Signals Heralding Direct Seismic Waves". Journal of Geophysical Research: Solid Earth 124, n.º 3 (marzo de 2019): 2970–89. http://dx.doi.org/10.1029/2018jb017130.
Texto completoJuhel, K., J.-P. Montagner, M. Vallée, J. P. Ampuero, M. Barsuglia, P. Bernard, E. Clévédé, J. Harms y B. F. Whiting. "Normal mode simulation of prompt elastogravity signals induced by an earthquake rupture". Geophysical Journal International 216, n.º 2 (18 de octubre de 2018): 935–47. http://dx.doi.org/10.1093/gji/ggy436.
Texto completoShimoda, Tomofumi, Kévin Juhel, Jean-Paul Ampuero, Jean-Paul Montagner y Matteo Barsuglia. "Early earthquake detection capabilities of different types of future-generation gravity gradiometers". Geophysical Journal International 224, n.º 1 (10 de octubre de 2020): 533–42. http://dx.doi.org/10.1093/gji/ggaa486.
Texto completoJuhel, Kévin, Quentin Bletery, Andrea Licciardi, Martin Vallée, Céline Hourcade y Théodore Michel. "Fast and full characterization of large earthquakes from prompt elastogravity signals". Communications Earth & Environment 5, n.º 1 (4 de octubre de 2024). http://dx.doi.org/10.1038/s43247-024-01725-9.
Texto completoLicciardi, Andrea, Quentin Bletery, Bertrand Rouet-Leduc, Jean-Paul Ampuero y Kévin Juhel. "Instantaneous tracking of earthquake growth with elastogravity signals". Nature, 11 de mayo de 2022. http://dx.doi.org/10.1038/s41586-022-04672-7.
Texto completoHourcade, Céline, Kévin Juhel y Quentin Bletery. "PEGSGraph: A Graph Neural Network for Fast Earthquake Characterization Based on Prompt ElastoGravity Signals". Journal of Geophysical Research: Machine Learning and Computation 2, n.º 1 (17 de febrero de 2025). https://doi.org/10.1029/2024jh000360.
Texto completoJuhel, Kévin, Zacharie Duputel, Luis Rivera y Martin Vallée. "Early Source Characterization of Large Earthquakes Using W Phase and Prompt Elastogravity Signals". Seismological Research Letters, 14 de noviembre de 2023. http://dx.doi.org/10.1785/0220230195.
Texto completoTesis sobre el tema "Prompt elastogravity signals"
Arias, Mendez Gabriela. "Alerte tsunami à partir de signaux élasto-gravitationnels par apprentissage profond". Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5080.
Texto completoAccurate and timely estimation of large earthquake magnitudes is critical to forecast potential tsunamis. Traditional earthquake early warning systems, relying on the early recorded seismic (P) waves, provide fast magnitude (Mw) estimates but typically saturate for Mw ≥ 7.5 events, making them unfit for tsunami warning. Alternative systems, relying on the later W phase or on geodetic signals, provide more accurate unsaturated magnitude estimates, to the cost of much slower warning, and therefore much shorter warning times. In this context, we explore the potential of prompt elastogravity signals (PEGS). PEGS propagate at the speed of light, are sensitive to the magnitude and focal mechanism of the earthquake and do not saturate for very large events. In order to rapidly leverage the information contained in these very low-amplitude signals we use a deep learning approach. We first train a Convolutional Neural Network (CNN) to estimate the magnitude and location of an earthquake based on synthetic PEGS augmented with empirical noise (recorded by actual seismometers). Tested on real data along the chilean subduction zone, we show that it would have estimated correctly the magnitude of the 2010 Mw 8.8 Maule earthquake. Nevertheless, the approach appears to be limited to Mw ≥ 8.7 events in this context. We then use a Graph Neural Network (GNN) designed to improve the performance of the CNN. We show that the GNN can be used to rapidly estimate the magnitude of Mw ≥ 8.3 events in Peru. Finally, we implement the model in the early warning system of Peru (as a complement of the current earthquake early warning system) and test its operational use for tsunami warning in simulated real time