Literatura académica sobre el tema "Progressive data analysis"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Progressive data analysis".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Progressive data analysis"
P, Veeramuthu. "Analysis of Progressive Duplicate Data Detection". Journal of Computational Mathematica 3, n.º 2 (30 de diciembre de 2019): 41–50. http://dx.doi.org/10.26524/cm53.
Texto completoLee, Kyeong-Jun, Jae-Ik Lee y Chan-Keun Park. "Analysis of generalized progressive hybrid censored competing risks data". Journal of the Korean Society of Marine Engineering 40, n.º 2 (29 de febrero de 2016): 131–37. http://dx.doi.org/10.5916/jkosme.2016.40.2.131.
Texto completoRinzivillo, Salvatore, Dino Pedreschi, Mirco Nanni, Fosca Giannotti, Natalia Andrienko y Gennady Andrienko. "Visually driven analysis of movement data by progressive clustering". Information Visualization 7, n.º 3-4 (septiembre de 2008): 225–39. http://dx.doi.org/10.1057/palgrave.ivs.9500183.
Texto completoWang, Tao, Lianbin Deng, Yuhong Li y Hao Peng. "Progressive TIN Densification with Connection Analysis for Urban Lidar Data". Photogrammetric Engineering & Remote Sensing 87, n.º 3 (1 de marzo de 2021): 205–13. http://dx.doi.org/10.14358/pers.87.3.207.
Texto completoHassan, Amal S., Rana M. Mousa y Mahmoud H. Abu-Moussa. "Analysis of Progressive Type-II Competing Risks Data, with Applications". Lobachevskii Journal of Mathematics 43, n.º 9 (septiembre de 2022): 2479–92. http://dx.doi.org/10.1134/s1995080222120149.
Texto completoAzarang, Leyla y Manuel,Oviedo,de,la Fuente. "idmTPreg: Regression Model for Progressive Illness Death Data". R Journal 10, n.º 2 (2019): 317. http://dx.doi.org/10.32614/rj-2018-081.
Texto completoKoch, Marcus W., Jop Mostert, Bernard Uitdehaag y Gary Cutter. "Clinical outcome measures in SPMS trials: An analysis of the IMPACT and ASCEND original trial data sets". Multiple Sclerosis Journal 26, n.º 12 (13 de septiembre de 2019): 1540–49. http://dx.doi.org/10.1177/1352458519876701.
Texto completoTurkay, Cagatay, Erdem Kaya, Selim Balcisoy y Helwig Hauser. "Designing Progressive and Interactive Analytics Processes for High-Dimensional Data Analysis". IEEE Transactions on Visualization and Computer Graphics 23, n.º 1 (enero de 2017): 131–40. http://dx.doi.org/10.1109/tvcg.2016.2598470.
Texto completoShilpa, Author y Sunita Parashar. "Performance Analysis of Apriori Algorithm with Progressive Approach for Mining Data". International Journal of Computer Applications 31, n.º 1 (31 de octubre de 2011): 13–18. http://dx.doi.org/10.5120/3788-5216.
Texto completoAl-Hossain, Abdullah Y. "Predictive Inference from the Exponentiated Weibull Model Given Adaptive Progressive Censored Data". Applied Mathematics & Information Sciences 10, n.º 3 (1 de mayo de 2016): 1177–84. http://dx.doi.org/10.18576/amis/100336.
Texto completoTesis sobre el tema "Progressive data analysis"
Morone, Daniel Justin Reese. "Progressive Collapse: Simplified Analysis Using Experimental Data". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354602937.
Texto completoLarson, Michael Andrew. "A Progressive Refinement of Postural Human Balance Models Based on Experimental Data Using Topological Data Analysis". Miami University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=miami159620428141697.
Texto completoAmrani, Naoufal, Joan Serra-Sagrista, Miguel Hernandez-Cabronero y Michael Marcellin. "Regression Wavelet Analysis for Progressive-Lossy-to-Lossless Coding of Remote-Sensing Data". IEEE, 2016. http://hdl.handle.net/10150/623190.
Texto completoSilvaroli, Antonio. "Design and Analysis of Erasure Correcting Codes in Blockchain Data Availability Problems". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Buscar texto completoEller, Michael R. "Utilizing Economic and Environmental Data from the Desalination Industry as a Progressive Approach to Ocean Thermal Energy Conversion (OTEC) Commercialization". ScholarWorks@UNO, 2013. http://scholarworks.uno.edu/td/1733.
Texto completoVidal, Jules. "Progressivité en analyse topologique de données". Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS398.
Texto completoTopological Data Analysis (TDA) forms a collection of tools that enable the generic and efficient extraction of features in data. However, although most TDA algorithms have practicable asymptotic complexities, these methods are rarely interactive on real-life datasets, which limits their usability for interactive data analysis and visualization. In this thesis, we aimed at developing progressive methods for the TDA of scientific scalar data, that can be interrupted to swiftly provide a meaningful approximate output and that are able to refine it otherwise. First, we introduce two progressive algorithms for the computation of the critical points and the extremum-saddle persistence diagram of a scalar field. Next, we revisit this progressive framework to introduce an approximation algorithm for the persistence diagram of a scalar field, with strong guarantees on the related approximation error. Finally, in a effort to perform visual analysis of ensemble data, we present a novel progressive algorithm for the computation of the discrete Wasserstein barycenter of a set of persistence diagrams, a notoriously computationally intensive task. Our progressive approach enables the approximation of the barycenter within interactive times. We extend this method to a progressive, time-constraint, topological ensemble clustering algorithm
Kmetzsch, Virgilio. "Multimodal analysis of neuroimaging and transcriptomic data in genetic frontotemporal dementia". Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS279.pdf.
Texto completoFrontotemporal dementia (FTD) represents the second most common type of dementia in adults under the age of 65. Currently, there are no treatments that can cure this condition. In this context, it is essential that biomarkers capable of assessing disease progression are identified. This thesis has two objectives. First, to analyze the expression patterns of microRNAs taken from blood samples of patients, asymptomatic individuals who have certain genetic mutations causing FTD, and controls, to identify whether the expressions of some microRNAs correlate with mutation status and disease progression. Second, this work aims at proposing methods for integrating cross-sectional data from microRNAs and neuroimaging to estimate disease progression. We conducted three studies. Initially, we focused on plasma samples from C9orf72 expansion carriers. We identified four microRNAs whose expressions correlated with the clinical status of the participants. Next, we tested all microRNA signatures identified in the literature as potential biomarkers of FTD or amyotrophic lateral sclerosis (ALS), in two groups of individuals. Finally, in our third work, we proposed a new approach, using a supervised multimodal variational autoencoder, that estimates a disease progression score from cross-sectional microRNA expression and neuroimaging datasets with small sample sizes. The work conducted in this interdisciplinary thesis showed that it is possible to use non-invasive biomarkers, such as circulating microRNAs and magnetic resonance imaging, to assess the progression of rare neurodegenerative diseases such as FTD and ALS
Conway, Devon S. "Long-Term Benefits of Early Treatment in Multiple Sclerosis: An Investigation Utilizing a Novel Data Collection Technique". Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1307635721.
Texto completoBaneshi, Mohammad Reza. "Statistical models in prognostic modelling with many skewed variables and missing data : a case study in breast cancer". Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/4191.
Texto completoIvarsson, Adam. "Expediting Gathering and Labeling of Data from Zebrafish Models of Tumor Progression and Metastasis Using Bespoke Software". Thesis, Linköpings universitet, Institutionen för datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-148691.
Texto completoLibros sobre el tema "Progressive data analysis"
Desimone, Leslie A. Use of computer programs STLK1 and STWT1 for analysis of stream-aquifer hydraulic interaction. Marlborough, Mass: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.
Buscar texto completoDesimone, Leslie A. Use of computer programs STLK1 and STWT1 for analysis of stream-aquifer hydraulic interaction. Marlborough, Mass: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.
Buscar texto completoMeier, Benjamin Mason, Ryan Cronk, Jeanne Luh, Jamie Bartram y Catarina de Albuquerque. Monitoring the Progressive Realization of the Human Rights to Water and Sanitation. Editado por Ken Conca y Erika Weinthal. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199335084.013.21.
Texto completoGlanville, Peter John. Symmetry. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198792734.003.0005.
Texto completoAnderson, C. W. The Idea of Data, Documents, and Evidence in Early-Twentieth-Century Journalism. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190492335.003.0002.
Texto completoBrace, Paul. Aggregating Survey Data to Estimate Subnational Public Opinion. Editado por Lonna Rae Atkeson y R. Michael Alvarez. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780190213299.013.15.
Texto completoHughes, Jeremy. Proteinuria as a direct cause of progression. Editado por David J. Goldsmith. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0137.
Texto completoTouchon, Justin C. Applied Statistics with R. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198869979.001.0001.
Texto completoFox, Alistair. A Gay Boy Comes to Terms with his Sexuality: 50 Ways of Saying Fabulous (Stewart Main, 2005). Edinburgh University Press, 2018. http://dx.doi.org/10.3366/edinburgh/9781474429443.003.0014.
Texto completoStrand, Vibeke, Jeremy Sokolove y Alvina D. Chu. Design of clinical trials in rheumatology. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0030.
Texto completoCapítulos de libros sobre el tema "Progressive data analysis"
Cramer, Erhard y George Iliopoulos. "Adaptive Progressive Censoring". En Ordered Data Analysis, Modeling and Health Research Methods, 73–86. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25433-3_5.
Texto completoScippacercola, Sergio. "The Progressive Single Linkage Algorithm Based on Minkowski Ultrametrics". En Data Analysis and Classification, 59–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03739-9_7.
Texto completoReizer, Aiala y Jonathan Reizer. "Progressive Multiple Alignment of Protein Sequences and the Construction of Phylogenetic Trees". En Computer Analysis of Sequence Data, 319–25. Totowa, NJ: Humana Press, 1994. http://dx.doi.org/10.1385/0-89603-276-0:319.
Texto completoAngelini, Marco y Giorgio Cazzetta. "Progressive Visualization of Epidemiological Models for COVID-19 Visual Analysis". En Advanced Visual Interfaces. Supporting Artificial Intelligence and Big Data Applications, 163–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68007-7_10.
Texto completoZhou, Weipeng y Gang Luo. "Parameter Sensitivity Analysis for the Progressive Sampling-Based Bayesian Optimization Method for Automated Machine Learning Model Selection". En Heterogeneous Data Management, Polystores, and Analytics for Healthcare, 213–27. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71055-2_17.
Texto completoFarneti, Elisabetta, Nicola Cavalagli, Mario Costantini, Francesco Trillo, Federico Minati, Ilaria Venanzi, Walter Salvatore y Filippo Ubertini. "Remote Sensing Satellite Data and Progressive Collapse Analysis for Structural Monitoring of Multi-span Bridges". En Lecture Notes in Civil Engineering, 377–86. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07258-1_39.
Texto completoSong, Xin, Cuirong Wang, Yanjun Chen y Jing Gao. "A Massive Sensor Data Streams Multi-dimensional Analysis Strategy Using Progressive Logarithmic Tilted Time Frame for Cloud-Based Monitoring Application". En Advances in Neural Networks – ISNN 2014, 550–57. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12436-0_61.
Texto completoGordon, Steven Lawrence. "Immigration Policy in South Africa: Public Opinion, Xenophobia and the Search for Progress". En IMISCOE Research Series, 57–75. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92114-9_5.
Texto completoAbsolu, Brandt, Tao Li y Mitsunori Ogihara. "Analysis of Chord Progression Data". En Advances in Music Information Retrieval, 165–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11674-2_8.
Texto completoMcCamish, Ben y Arash Termehchy. "Progressive Interactions Between Data Sources". En Heterogeneous Data Management, Polystores, and Analytics for Healthcare, 30–38. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14177-6_3.
Texto completoActas de conferencias sobre el tema "Progressive data analysis"
Ai, Bo, Tinghua Ai, Xinming Tang y Zhen Li. "Progressive transmission of road network". En International Symposium on Spatial Analysis, Spatial-temporal Data Modeling, and Data Mining, editado por Yaolin Liu y Xinming Tang. SPIE, 2009. http://dx.doi.org/10.1117/12.838304.
Texto completoHu, Peng y Li Yang. "DEM's digital progressive generalization and multi-scale visualization of contour lines". En International Symposium on Spatial Analysis, Spatial-temporal Data Modeling, and Data Mining, editado por Yaolin Liu y Xinming Tang. SPIE, 2009. http://dx.doi.org/10.1117/12.838337.
Texto completoRanjan, Sudhanshu, Dheeraj Mekala y Jingbo Shang. "Progressive Sentiment Analysis for Code-Switched Text Data". En Findings of the Association for Computational Linguistics: EMNLP 2022. Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.findings-emnlp.82.
Texto completoVenkat, Aniketh, Duong Hoang, Attila Gyulassy, Peer-Timo Bremer, Frederick Federer, Alessandra Angelucci y Valerio Pascucci. "High-Quality Progressive Alignment of Large 3D Microscopy Data". En 2022 IEEE 12th Symposium on Large Data Analysis and Visualization (LDAV). IEEE, 2022. http://dx.doi.org/10.1109/ldav57265.2022.9966406.
Texto completoJo, Jaemin, Jinwook Seo y Jean-Daniel Fekete. "A progressive k-d tree for approximate k-nearest neighbors". En 2017 IEEE Workshop on Data Systems for Interactive Analysis (DSIA). IEEE, 2017. http://dx.doi.org/10.1109/dsia.2017.8339084.
Texto completoRoeder, Jan. "Alternative Data for Credit Risk Management: An Analysis of the Current State of Research". En Digital Support from Crisis to Progressive Change. University of Maribor Press, 2021. http://dx.doi.org/10.18690/978-961-286-485-9.13.
Texto completoAbbas, Antragama Ewa, Wirawan Agahari, Montijn van de Ven, Anneke Zuiderwijk y Mark de Reuver. "Business Data Sharing through Data Marketplaces: A Systematic Literature Review". En Digital Support from Crisis to Progressive Change. University of Maribor Press, 2021. http://dx.doi.org/10.18690/978-961-286-485-9.6.
Texto completoRouseau, Carl, Stephen P. Engelstad y Stephen B. Clay. "Data Requirements for Progressive Damage Analysis of Composite Structures". En 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-0196.
Texto completoUsher, Will, Landon Dyken y Sidharth Kumar. "Speculative Progressive Raycasting for Memory Constrained Isosurface Visualization of Massive Volumes". En 2023 IEEE 13th Symposium on Large Data Analysis and Visualization (LDAV). IEEE, 2023. http://dx.doi.org/10.1109/ldav60332.2023.00007.
Texto completoFerenček, Aljaž. "Impact Assesment of Open Government Data". En Digital Support from Crisis to Progressive Change. University of Maribor Press, 2021. http://dx.doi.org/10.18690/978-961-286-485-9.56.
Texto completoInformes sobre el tema "Progressive data analysis"
Touhami, Abdelkhalek y Dorothee Boccanfuso. Is the Moroccan Fiscal System Progressive ? A Shapley Decomposition. CIRANO, septiembre de 2023. http://dx.doi.org/10.54932/wrzq6217.
Texto completoGo, Eugenia, Sam Hill, Maria Hanna Jaber, Yothin Jinjarak, Donghyun Park y Anton Ragos. Developing Asia’s Fiscal Landscape and Challenges. Asian Development Bank, junio de 2022. http://dx.doi.org/10.22617/wps220267-2.
Texto completovon Schiller, Armin. Party System Institutionalization and Reliance on Personal Income Tax in Developing Countries. Inter-American Development Bank, diciembre de 2015. http://dx.doi.org/10.18235/0011710.
Texto completoDuong, Bich-Hang y Joan DeJaeghere. From Student-Centered to Competency-Based Reform: Exploring Teachers’ Perspective of Meaningful Participation. Research on Improving Systems of Education (RISE), febrero de 2022. http://dx.doi.org/10.35489/bsg-rise-wp_2022/089.
Texto completoVaughan, Tanya, Sarah Richardson, Toby Carslake, Trisha Reimers, Greg Macaskill, Toby Newton, Nathan Zoanetti, Andrew Mannion y Martin Murphy. Building capacity for Quality Teaching Rounds – Victoria. Final report. Australian Council for Educational Research, junio de 2023. http://dx.doi.org/10.37517/978-1-74286-713-7.
Texto completoChronopoulos, Ilias, Katerina Chrysikou, George Kapetanios, James Mitchell y Aristeidis Raftapostolos. Deep Neural Network Estimation in Panel Data Models. Federal Reserve Bank of Cleveland, julio de 2023. http://dx.doi.org/10.26509/frbc-wp-202315.
Texto completoLippolis, Nicolas. Diagnostics for Industrialisation: Growth, Sectoral Selection, and Constraints on Firms. Digital Pathways at Oxford, marzo de 2022. http://dx.doi.org/10.35489/bsg-dp-wp_2022/03.
Texto completoTorero, Máximo y Jaime Saavedra-Chanduví. Labor Market Reforms and Their Impact on Formal Labor Demand and Job Market Turnover: The Case of Peru. Inter-American Development Bank, mayo de 2000. http://dx.doi.org/10.18235/0011243.
Texto completoWang, Hao y Yulai Xu. Chemopreventive Effects of Immunotrophic Preparations in the Development of Prostate Cancer: A Network Meta-Analysis of Randomized Controlled Trials. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, agosto de 2022. http://dx.doi.org/10.37766/inplasy2022.8.0037.
Texto completoMa, Yunxing, Julia Brettschneider y Joanna Collingwood. A systematic review and meta-analysis of cerebrospinal fluid amyloid and tau levels in patients progressing from Mild Cognitive Impairment to Alzheimer’s Disease. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, julio de 2022. http://dx.doi.org/10.37766/inplasy2022.7.0020.
Texto completo