Literatura académica sobre el tema "Programmable finite impulse response"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Programmable finite impulse response".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Programmable finite impulse response"
Poornima, Y. y M. Kamalanathan. "Design of Low Power Vedic Multiplier Based Reconfigurable Fir Filter for DSP Applications". International Journal of Advance Research and Innovation 7, n.º 2 (2019): 57–60. http://dx.doi.org/10.51976/ijari.721908.
Texto completoAparna, A. y T. Vigneswaran. "DESIGN OF HIGH PERFORMANCE MULTIPLIERLESS LINEAR PHASE FINITE IMPULSE RESPONSE FILTERS". Asian Journal of Pharmaceutical and Clinical Research 10, n.º 13 (1 de abril de 2017): 66. http://dx.doi.org/10.22159/ajpcr.2017.v10s1.19564.
Texto completoZhang, Zhenyu, Yanan Li y Bassam Nima. "Digital Finite Impulse Response Equalizer for Nonlinear Frequency Response Compensation in Wireless Communication". Electronics 12, n.º 9 (26 de abril de 2023): 2010. http://dx.doi.org/10.3390/electronics12092010.
Texto completoVandenbussche, Jean‐Jacques, Peter Lee y Joan Peuteman. "Multiplicative finite impulse response filters: implementations and applications using field programmable gate arrays". IET Signal Processing 9, n.º 5 (julio de 2015): 449–56. http://dx.doi.org/10.1049/iet-spr.2014.0143.
Texto completoMohanraj, R. y R. Vimala. "ECG Signal Denoising with Field-Programmable Gate Array Implementation of Fast Digital Finite Impulse Response and Infinite Impulse Response Filters". Journal of Medical Imaging and Health Informatics 10, n.º 1 (1 de enero de 2020): 81–85. http://dx.doi.org/10.1166/jmihi.2020.2842.
Texto completoDługosz, Rafał y Krzysztof Iniewski. "Programmable Switched Capacitor Finite Impulse Response Filter with Circular Memory Implemented in CMOS 0.18 μm Technology". Journal of Signal Processing Systems 56, n.º 2-3 (10 de junio de 2008): 295–306. http://dx.doi.org/10.1007/s11265-008-0233-3.
Texto completo., Akriti. "The Design of FIR Filter Based on improved DA Algorithm and its FPGA implementation: REVIEW". International Journal for Research in Applied Science and Engineering Technology 12, n.º 3 (31 de marzo de 2024): 17–20. http://dx.doi.org/10.22214/ijraset.2024.58572.
Texto completoKumari, Puja, Rajeev Gupta y Abhijit Chandra. "Design and Implementation of a Power Efficient Pulse-shaping Finite Impulse Response Filter on a Field Programmable Gate Array Chip". International Journal of Image, Graphics and Signal Processing 4, n.º 4 (15 de mayo de 2012): 1–10. http://dx.doi.org/10.5815/ijigsp.2012.04.01.
Texto completoJain, Ekta H. y Chandu N. Bhoyar. "Implementation of High Speed Operating FIR Filter with DA Algorithm Comparing Results with MAC Algorithm and Simple FIR Filter Result". Journal of Advance Research in Electrical & Electronics Engineering (ISSN: 2208-2395) 2, n.º 2 (28 de febrero de 2015): 10–17. http://dx.doi.org/10.53555/nneee.v2i2.231.
Texto completoWANG, WEI, M. N. S. SWAMY y M. O. AHMAD. "NOVEL DESIGN AND FPGA IMPLEMENTATION OF DA-RNS FIR FILTERS". Journal of Circuits, Systems and Computers 13, n.º 06 (diciembre de 2004): 1233–49. http://dx.doi.org/10.1142/s0218126604001970.
Texto completoTesis sobre el tema "Programmable finite impulse response"
Macpherson, Kenneth Noble. "Low hardware cost, high speed, full-parallel finite impulse response digital filters on field programmable gate arrays". Thesis, University of Strathclyde, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405323.
Texto completoEshra, Islam. "Un FIRDAC programmable pour émetteurs RF re-configurable". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS461.
Texto completoThe first part of this work relates to the design and implementation of a programmable Finite Impulse Response Digital to Analog Converter (FIRDAC). The programmability is in the filter's order (N-1) and its coefficients. The proposed FIRDAC is capable of providing an order up to 62 and a ratio between maximum to minimum coefficient up to 159. This allowed the filter to provide up to 100dB of attenuation and a wide range of normalized transition-band (>0.0156). The FIRDAC filter has been designed and implemented in 65nm CMOS with total active area 0.867mm2. The FIRDAC can operate up to 2.56 GHz of sampling frequency at an average power consumption of 9mW. For a single tone input, the FIRDAC filter managed to provide an SNR up to 67.3dB and a SFDR of 72dBc. The FIRDAC filter was tested with different modulation techniques: OFDM, 16-QAM OFDM and 64-QAM OFDM having different channel Bandwidth. The circuit achieved an Error Vector Magnitude (EVM) of 2.66%, 1.9% and 2.29% respectively, complying with the LTE and the 802.11ac standards. The second part of this work relates to the design of a programmable RF front-end circuit. The RF front-end is composed of an analog RF mixer, a programmable Pre-Power Amplifier (PPA) and a tunable LC tank. The whole RF front-end introduced a total programmable gain of 23dB with a gain step of 1.53dB operating in the 1.5GHz - 5GHz frequency range. The maximum output RF power is -11dBm with a power consumption of 23mW. Simulation result showed a maximum SFDR of -61.95dBc for two tones at a carrier frequency of 4GHz. While for a 16-QAM OFDM signal, the obtained EVM was 4.76%
Broddfelt, Michel. "Design of a Finite-Impulse Response filter generator". Thesis, Linköping University, Department of Electrical Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2027.
Texto completoIn this thesis a FIR filter generator has been designed. The program generates FIR filters in the form of VHDL-files. Four different filter structures have been implemented in the generator, Direct Form (DF), Differential Coefficients Method (DCM), polyphase filters and (2-by-2) filters.
The focus of the thesis was to implement filter structures that create FIR filters with as low power consumption and area as possible.
The generaterator has been implemented i C++. The C++ program creates text-files with VHDL-code. The user must then compile and synthesize the VHDL-files. The program uses an text-file with the filter coefficients as input.
Carter, Scott Edward. "Finite impulse response utilizing the principles of superposition". Master's thesis, University of Central Florida, 1995. http://digital.library.ucf.edu/cdm/ref/collection/RTD/id/15187.
Texto completoWindow functions have been greatly utilized in the synthesis of finite impulse response (FIR) filters implemented using surface acoustic wave (SAW) devices. The critical parameter in any FIR design in the impulse response length, which must be optimized for the given design specifications in order to reduce the size of each device. To this end, many design algorithms have been intorduced such as Remez excange, linear programming, and least mean squares. A new algorithm has been derived which is efficient and accurate for the design of arbitrary filter specifications requiring less computationsthan the current algorithms. The FIR design is applicaable to general SAW filter design and allows two weighted transducers to be designed in a near optimal method without the need to perform zero aplitting of de-convolution. The thesis first provides the definition of the window functions used for the design process. Then the overview of the design process is discussed using a flowchart of the modeling program for designing and FIR without tranducer separation and sample simulation is presented. Next, the effects of monotonically increasing sidelobes on the transition bandwidth are discussed. This is followed by a discussion of the addition of arbitary phase to the filter design requirements. Next, the separation of the response into a two transducer design utilizing the two window function series is explained. Finally, the results are discussed and compared with other design techniques.
M.S.;
Electrical and Computer Engineering
Engineering;
Electrical Engineering
69 p.
ix, 69 leaves, bound : ill. ; 28 cm.
Sokol, Thomas M. "Finite impulse response (FIR) filters to simulate response of an antenna". Connect to resource, 2006. http://hdl.handle.net/1811/6442.
Texto completoTitle from first page of PDF file. Document formatted into pages: contains 42 p.; also includes graphics. Includes bibliographical references (p. 42). Available online via Ohio State University's Knowledge Bank.
Bishop, Carlton Delos. "Finite impulse response filter design using cosine series functions". Doctoral diss., University of Central Florida, 1988. http://digital.library.ucf.edu/cdm/ref/collection/RTD/id/43377.
Texto completoWindow functions have been extensively used for the design of SAW filters. The classical truncated cosine series functions, such as the Hamming and Blackmann functions, are only a few of an infinite set of such functions. The derivation of this set of functions from orthonormal basis sets and the criteria for obtaining the constant coefficients of the functions are presented. These functions are very useful because of the closed-form expressions and their easily recognizable Fourier transform. Another approach to the design of Gaussian shaped filters having a desired sidelobe level using a 40 term cosine series will be presented as well. This approach is again non-iterative and a near equi-ripple sidelobe level filter could be achieved. A deconvolution technique will also be presented. this has the advantage of being non-iterative, simple and fast. This design method produces results comparable to the Dolph-Chebyshev technique.
Ph.D.
Doctorate
Electrical Engineering and Communication
Engineering
Electrical Engineering
41 p.
vii, 41 leaves, bound : ill. ; 28 cm.
BRUEGGE, THOMAS JOSEPH. "THE USE OF FINITE IMPULSE RESPONSE KERNELS FOR IMAGE RESTORATION". Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187974.
Texto completoCampbell, Roy Lee. "Performance assessment of the finite impulse response Adaptive Line Enhancer". Diss., Mississippi State : Mississippi State University, 2002. http://library.msstate.edu/etd/show.asp?etd=etd-05222002-085151.
Texto completoLi, Liwei. "Microwave Photonic Signal Processing Techniques based on Finite Impulse Response Configurations". Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/9477.
Texto completoAlm, Erik. "Area and Power Efficiency of Multiplier-Free Finite Impulse Response Filters". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-237417.
Texto completoDigitala radiosystem innehåller ofta ett stort antal filter med ändliga impulssvar. På grund av hur sådana filter opererar krävs ett stort antal multiplikationer, vilka implementerade i hårdvara tenderar ockupera stor kiselyta och konsumera hög effekt. För att reducera kostnader finns det därför ett starkt incitament att implementera dessa filter utan generella multiplikatorer. Detta examensarbete utforskar en metod för att implementera digitala halvbandsfilter utan generella multiplicerare, genom att använda en speciell filterstruktur och ersätta multiplikationerna med sekvenser av binära skiftoperationer och additioner. Besparingarna i termer av effektförbrukning och kiselyta uppskattas och jämförs med ett konventionellt implementerat filter (med en vanlig struktur) som uppfyller samma specifikationer samt samma filter med koefficienter manipulerade så att de kan uttryckas som sekvenser av binära skiftoperationer och additioner. Resultaten visar att såväl kiselyta som effektförbrukning ter sig lägre för filtret implementerat med den speciella strukturen och utan generella multiplicerare än för det konventionella filtret innehållande generella multiplicerare. Dock visas också att ännu större besparingar uppnås genom att använda den konventionella filterstrukturen men med koefficienter ma-nipulerade så att dessa kan implementeras utan multiplicerare. Överlag ärslutsatsen att konventionella filterstrukturer i kombination med metoder för att göra dess koefficienter implementerbara utan multiplicerare verkar mer lovande och att ytterligare studier av sådana metoders förtjänster bör stud-eras. Framtida studier skulle även kunna ta i beaktande metoder som ärapplicerbara på filter med icke-konstanta koefficienter.
Libros sobre el tema "Programmable finite impulse response"
Oren, Joel A. Design of an asynchronous third-order finite impulse response filter. 1994.
Buscar texto completoShmaliy, Yuriy S. y Shunyi Zhao. Optimal and Robust State Estimation: Finite Impulse Response and Kalman Approaches. Wiley & Sons, Incorporated, John, 2022.
Buscar texto completoShmaliy, Yuriy S. y Shunyi Zhao. Optimal and Robust State Estimation: Finite Impulse Response and Kalman Approaches. Wiley & Sons, Limited, John, 2022.
Buscar texto completoShmaliy, Yuriy S. y Shunyi Zhao. Optimal and Robust State Estimation: Finite Impulse Response and Kalman Approaches. Wiley & Sons, Incorporated, John, 2022.
Buscar texto completoShmaliy, Yuriy S. y Shunyi Zhao. Optimal and Robust State Estimation: Finite Impulse Response and Kalman Approaches. Wiley & Sons, Incorporated, John, 2022.
Buscar texto completoCapítulos de libros sobre el tema "Programmable finite impulse response"
Meyer-Baese, Uwe. "Finite Impulse Response (FIR) Digital Filters". En Digital Signal Processing with Field Programmable Gate Arrays, 179–224. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-45309-0_3.
Texto completoMayer-Baese, Uwe. "Finite Impulse Response (FIR) Digital Filters". En Digital Signal Processing with Field Programmable Gate Arrays, 109–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06728-4_3.
Texto completoMeyer-Baese, Uwe. "Finite Impulse Response (FIR) Digital Filters". En Digital Signal Processing with Field Programmable Gate Arrays, 79–114. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04613-5_3.
Texto completoRaja Sudharsan, R. y J. Deny. "Field Programmable Gate Array (FPGA)-Based Fast and Low-Pass Finite Impulse Response (FIR) Filter". En Intelligent Computing and Innovation on Data Science, 199–206. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3284-9_23.
Texto completoRebizant, Waldemar, Janusz Szafran y Andrzej Wiszniewski. "Finite Impulse Response Filters". En Signals and Communication Technology, 65–95. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-802-7_6.
Texto completoBerthoumieu, Yannick, Eric Grivel y Mohamed Najim. "Finite Impulse Response Filters". En Digital Filters Design for Signal and Image Processing, 137–72. London, UK: ISTE, 2010. http://dx.doi.org/10.1002/9780470612064.ch5.
Texto completoTarr, Eric. "Finite Impulse Response Filters". En Hack Audio, 205–34. New York, NY : Routledge, 2019. | Series: Audio Engineering Society presents: Routledge, 2018. http://dx.doi.org/10.4324/9781351018463-12.
Texto completoUnpingco, José. "Finite Impulse Response Filters". En Python for Signal Processing, 93–122. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01342-8_5.
Texto completoSundararajan, D. "Finite Impulse Response Filters". En Digital Signal Processing, 189–249. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62368-5_6.
Texto completoWerner, Martin. "Finite-duration-impulse-response-Systeme". En Digitale Signalverarbeitung mit MATLAB®, 169–86. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-18647-0_8.
Texto completoActas de conferencias sobre el tema "Programmable finite impulse response"
Pawlowski, Pawel, Adam Pawlikowski, Rafal Dlugosz y Adam Dabrowski. "Programmable, switched-capacitor finite impulse response filter realized in CMOS technology for education purposes". En 2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA). IEEE, 2018. http://dx.doi.org/10.23919/spa.2018.8563416.
Texto completoTran, Kelvin, Jomo Edwards, Lloyd F. Linder, Christopher Gill, Matthias Bussmann, Salam Elahmadi y Harry Tan. "A 50 dB Dynamic Range, 11.3 GSPS, programmable Finite Impulse Response (FIR) equalizer in 0.18µm SiGe BiCMOS technology for high speed Electronic Dispersion Compensation (EDC) applications". En 2009 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). IEEE, 2009. http://dx.doi.org/10.1109/rfic.2009.5135595.
Texto completoKim, Kwang H. y Bahram Shafai. "Finite impulse response estimator". En OE/LASE '90, 14-19 Jan., Los Angeles, CA, editado por Oliver E. Drummond. SPIE, 1990. http://dx.doi.org/10.1117/12.21607.
Texto completoKim, K. "Finite impulse response estimator (FIRE)". En Signal and Data Processing of Small Targets 1990. SPIE, 1990. http://dx.doi.org/10.1117/12.2321780.
Texto completoSilveira, Paulo E. X. y Kelvin H. Wagner. "Optical finite impulse response neural networks". En SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, editado por Bahram Javidi y Demetri Psaltis. SPIE, 1999. http://dx.doi.org/10.1117/12.363977.
Texto completoLi, Junfeng, Jian Zhang, Shuichi Sakamoto, Yiti Suzuki y Yonghong Yan. "An efficient finite-impulse-response filter model of head-related impulse response". En ICA 2013 Montreal. ASA, 2013. http://dx.doi.org/10.1121/1.4800465.
Texto completoJouaneh, Musa K. y Erik Anderson. "Input Shaping Using Finite Impulse Response Filters". En Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006. http://dx.doi.org/10.1109/cdc.2006.376818.
Texto completoPawlowski, Pawel, Rafal Dlugosz y Adam Dabrowski. "Switched-capacitor finite impulse response rotator filter". En 2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA). IEEE, 2020. http://dx.doi.org/10.23919/spa50552.2020.9241247.
Texto completoYang, Maosheng, Elvin Isufi, Michael T. Schaub y Geert Leus. "Finite Impulse Response Filters for Simplicial Complexes". En 2021 29th European Signal Processing Conference (EUSIPCO). IEEE, 2021. http://dx.doi.org/10.23919/eusipco54536.2021.9616185.
Texto completoSilveira, Paulo E. X. y Kelvin H. Wagner. "Optical Architecture for Finite Impulse Response Neural Networks". En Optics in Computing. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/oc.1999.othd5.
Texto completo