Literatura académica sobre el tema "Processus de solidification"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Processus de solidification".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Processus de solidification"
Saleil, Jean y Jean Le Coze. "La coulée continue des aciers. Un exemple de développement technique où l’étroite coopération entre métallurgistes, constructeurs et exploitants a été d’une grande fécondité". Matériaux & Techniques 106, n.º 5 (2018): 505. http://dx.doi.org/10.1051/mattech/2018046.
Texto completoDeville, Sylvain y Cécile Monteux. "Congélation d’émulsions : de la mayonnaise à la métallurgie". Reflets de la physique, n.º 66 (julio de 2020): 22–27. http://dx.doi.org/10.1051/refdp/202066022.
Texto completoMadjoudj, Nadera y Khaled Imessad. "Matériau à changement de phase au service de la bioclimatique". Journal of Renewable Energies 19, n.º 4 (17 de octubre de 2023): 647–62. http://dx.doi.org/10.54966/jreen.v19i4.601.
Texto completoIHARA, I., D. BURHAN y Y. SEDA. "NTM-02: In-Situ Observation of Solidification and Melting Processes of Aluminum Alloy by Ultrasound(NTM-I: NON TRADITIONAL MANUFACTURING PROCESS)". Proceedings of the JSME Materials and Processing Conference (M&P) 2005 (2005): 44. http://dx.doi.org/10.1299/jsmeintmp.2005.44_4.
Texto completoMitchell, A. "Solidification in remelting processes". Materials Science and Engineering: A 413-414 (diciembre de 2005): 10–18. http://dx.doi.org/10.1016/j.msea.2005.08.157.
Texto completoViskanta, R., M. V. A. Bianchi, J. K. Critser y D. Gao. "Solidification Processes of Solutions". Cryobiology 34, n.º 4 (junio de 1997): 348–62. http://dx.doi.org/10.1006/cryo.1997.2015.
Texto completoRettenmayr, Markus. "Benefits of Modeling of Melting for the Understanding of Solidification Processes". Materials Science Forum 649 (mayo de 2010): 53–59. http://dx.doi.org/10.4028/www.scientific.net/msf.649.53.
Texto completoBianchi, Marcus V. A. y Raymond Viskanta. "Gas segregation during solidification processes". International Journal of Heat and Mass Transfer 40, n.º 9 (junio de 1997): 2035–43. http://dx.doi.org/10.1016/s0017-9310(96)00283-9.
Texto completoDantzig, J. A. "Modeling Solidification Processes using FIDAP". Crystal Research and Technology 34, n.º 4 (abril de 1999): 417–24. http://dx.doi.org/10.1002/(sici)1521-4079(199904)34:4<417::aid-crat417>3.0.co;2-m.
Texto completoEshraghi, Mohsen. "Numerical Simulation of Solidification Processes". Metals 13, n.º 7 (21 de julio de 2023): 1303. http://dx.doi.org/10.3390/met13071303.
Texto completoTesis sobre el tema "Processus de solidification"
Droux, Jean-Jacques. "Simulation numérique bidimensionnelle et tridimensionnelle de processus de solidification /". [S.l.] : [s.n.], 1991. http://library.epfl.ch/theses/?nr=901.
Texto completoLamazouade, André. "Modélisation du processus de croissance cristalline de Bridgman par une méthode enthalpique". Aix-Marseille 2, 2000. http://www.theses.fr/2000AIX22049.
Texto completoDalmazzone-Jolivet, Christine. "Impact de la surfusion sur le processus de solidification dans une opération de prilling". Compiègne, 1992. http://www.theses.fr/1992COMPD551.
Texto completoHachani, Lakhdar. "Etude de l'influence de la convection naturelle et forcée sur le processus de la solidification : cas d'un alliage métallique binaire". Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00949060.
Texto completoYaghi, Mohammed. "Phase Field Modeling of Water Solidification : A Port-Hamiltonian Approach". Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10198.
Texto completoThis thesis presents a study on modeling, formulating, and discretizing solidification processes using the Port Hamiltonian framework combined with the phase field approach. The goal is to provide numerical models suitable for simulating, designing, and controlling such processes. It addresses the challenges of representing and controlling phase change phenomena in distributed parameter models with moving interfaces, with a particular focus on the solidification of pure water. The work has been motivated by the development of green processes for water purification technologies such as cyclic melt and crystallization of water, which offer a low-energy solution while minimizing the use of hazardous materials. The first chapter recalls briefly the physical models of multiphase systems and the description of the interface between the phases, in terms of thin or diffuse interfaces. It presents the phase field theory and the associated thermodynamical models of the multiphase systems. Finally, it expresses the dynamics of solidification processes as a coupled system of evolution equations consisting of the Allen-Cahn equation and energy balance equations. A main contribution of this chapter consists in a comprehensive presentation of solidification using the entropy functional approach within the phase field framework. In the second chapter, the Port Hamiltonian formulation of the dynamics of solidification processes using the phase field approach is developed. This chapter introduces Boundary Port Hamiltonian Systems and shows how an extension of the state space to the gradient of the phase field variable leads to a Port Hamiltonian formulation of the solidification model. The model is written in such a way that it utilizes the available thermodynamic data for liquid water and ice, allowing for a detailed and physically-based modeling, leading to an implicit Boundary Port Hamiltonian model. The final chapter focuses on the structure-preserving discretization of the solidification process using the Partitioned Finite Element Method. This ensures that the discretized model retains the Port Hamiltonian structure and, in turn, the key properties such as energy conservation and passivity. The chapter covers weak formulations, projections, and discrete Hamiltonians for the heat equation and the Allen-Cahn equation, leading to the spatial discretization of the solidification model. The principal contribution of this chapter lies in the discretization methodology applied to the implicit Port Hamiltonian model of the solidification process using entropy as the generating function. Overall, this thesis provides structured models of solidification processes using the Port Hamiltonian framework, providing a foundation for their physics-based simulation and control and for future research and development in distributed parameter systems with moving interfaces, particularly for environmental and chemical engineering applications
Hassan, Hamdy Abo Ali. "Etude et optimisation des transferts de chaleur en injection moulage : analyse de leur influence sur les propriétés finales". Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13956.
Texto completoPlastics are typically polymers of high molecular weight, and may contain other substances to improve performance and/or reduce costs. Plastic industry is one of the world?s fastest growing industries; almost every product that is used in daily life involves the usage of plastic. There are different methods for polymer processing (thermoforming, blow molding, compression molding of polymers, transfer molding of polymers, extrusion of polymers, injection molding of polymers, etc.) which differ by the method of fabrications, the used materials, the quality of the product and the form of the final product. Demand for injection molded parts continues to increase every year because plastic injection molding process is well known as the most efficient manufacturing techniques for economically producing precise plastic parts and complex geometry at low cost and a large quantity. The plastic injection molding process is a cyclic process where polymer is injected into a mold cavity, and solidifies to form a plastic part. There are three significant stages in each cycle. The first stage is filling the cavity with hot polymer melt at high injection pressure and temperature (filling and post-filling stage). It is followed by cooling the injected polymer material until the material is completely solidified (cooling stage), finally the solidified part is ejected (ejection stage)
Mehrabi, M. Reza. "Modeling transport processes in directional solidification". Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/11999.
Texto completoLeung, Winnie C. M. "Thermomechanical analyses of metal solidification processes". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/42561.
Texto completoGao, Fuquan. "Molten microdrop deposition and solidification processes". Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/11622.
Texto completoChakraborty, Suman. "Studies On Momentum, Heat And Mass Transfer In Binary Alloy Solidification Processes". Thesis, Indian Institute of Science, 2001. https://etd.iisc.ac.in/handle/2005/287.
Texto completoLibros sobre el tema "Processus de solidification"
Janssson, J. F. y U. W. Gedde, eds. Solidification Processes in Polymers. Darmstadt: Steinkopff, 1992. http://dx.doi.org/10.1007/bfb0115564.
Texto completoSymposium F on Advances in Solidification Processes (1993 Strasbourg, France). Advances in solidification processes. Amsterdam: North-Holland, 1993.
Buscar texto completoP, Bárczy, ed. Solidification and microgravity. Zürich: Trans Tech Publications, 1991.
Buscar texto completoRisk Reduction Engineering Laboratory (U.S.), ed. Interference mechanisms in waste stabilization/solidification processes: Project summary. Cincinnati, OH: U.S. Environmental Protection Agency, Risk Reduction Engineering Laboratory, 1990.
Buscar texto completoJones, Larry W. Interference mechanisms in waste stabilization/solidification processes: Project summary. Cincinnati, OH: U.S. Environmental Protection Agency, Risk Reduction Engineering Laboratory, 1990.
Buscar texto completoInternational Conference on Modeling of Casting and Welding Processes (4th 1988 Palm Coast, Fla.). Modeling and control of casting and welding processes IV: Proceedings of the Fourth International Conference on Modeling of Casting and Welding Processes. Warrendale, Pa: Minerals, Metals & Materials Society, 1988.
Buscar texto completoSymposium, F. on Advances in Solidification Processes (1993 Strasbourg France). Advances in solidification processes: Proceedings of the Symposium F on Advances in Solidification Processes of the 1993 E-MRS Spring Conference, Strasbourg, France, May 4-7, 1993. Amsterdam: North Holland, 1993.
Buscar texto completoD, Solomon Alan, ed. Mathematical modeling of melting and freezing processes. Washington: Hemisphere Pub. Corp., 1993.
Buscar texto completoInternational Conference on Modeling of Casting and Welding Processes (8th 1998 San Diego, Calif.). Modeling of casting, welding, and advanced solidification processes VIII: Proceedings of the Eighth International Conference on Modeling of Casting and Welding Processes, held in San Diego, California on June 7-12, 1998. Warrendale, Pa: Minerals, Metals & Materials Society, 1998.
Buscar texto completo1942-, Stefanescu Doru Michael, Engineering Conferences International y International Conference on Modeling of Casting, Welding and Advanced Solidification Processes (10th : 2003 : Destin, Fla.), eds. Modeling of casting, welding, and advanced solidification processes-X: Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes : held in Destin, Florida on May 25-30, 2003. Warrendale, Pa: Minerals, Metals & Materials Society, 2003.
Buscar texto completoCapítulos de libros sobre el tema "Processus de solidification"
Minkoff, Isaac. "Solidification/Liquid State Processes". En Materials Processes, 1–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-95562-4_1.
Texto completoVerdeja González, Luis Felipe, Daniel Fernández González y José Ignacio Verdeja González. "Solidification of the Steel". En Operations and Basic Processes in Steelmaking, 233–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68000-8_4.
Texto completoDantzig, Jonathan A. y Daniel A. Tortorelli. "Optimization Applied to Solidification Processes". En Interactive Dynamics of Convection and Solidification, 183–85. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2809-4_28.
Texto completoPehlke, Robert D. "Formation of Porosity During Solidification of Cast Metals". En Foundry Processes, 427–45. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1013-6_17.
Texto completoKarkhin, Victor A. "Melting and Solidification of Base Metal". En Thermal Processes in Welding, 363–79. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5965-1_9.
Texto completoDantzig, Jonathan A. "Solidification Processes: From Dendrites to Design". En Continuum Scale Simulation of Engineering Materials, 647–56. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603786.ch34.
Texto completoCrha, Jan, J. Havlíček, Jiri Molínek y Petr Kozelský. "Acoustic Emission Monitoring during Solidification Processes". En Advanced Materials Research, 299–304. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-420-0.299.
Texto completoSuwas, Satyam y Ranjit Kumar Ray. "Texture Evolution During Solidification and Solid-State Transformation". En Engineering Materials and Processes, 73–93. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6314-5_4.
Texto completoSpim, J. A., M. C. F. Ierardi y A. Garcia. "Mathematical Modelling of Fractional Solidification". En Microstructures, Mechanical Properties and Processes - Computer Simulation and Modelling, 398–403. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527606157.ch63.
Texto completoMahamood, R. M. "Laser Metal Deposition Process, Solidification Mechanism and Microstructure Formation". En Engineering Materials and Processes, 37–59. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64985-6_3.
Texto completoActas de conferencias sobre el tema "Processus de solidification"
Okamoto, Kei y Ben Q. Li. "Inverse Design of Solidification Processes". En ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59449.
Texto completoOkamoto, Kei y Ben Q. Li. "Inverse Design of Time Dependent Solidification Processes". En ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72556.
Texto completoMitchell, A. "Melting Processes and Solidification in Alloys 718-625". En Superalloys. TMS, 1991. http://dx.doi.org/10.7449/1991/superalloys_1991_15_27.
Texto completoPinto, P., L. Mazare, D. Soares, F. S. Silva, Glaucio H. Paulino, Marek-Jerzy Pindera, Robert H. Dodds, Fernando A. Rochinha, Eshan Dave y Linfeng Chen. "Incremental Melting and Solidification Process—Metallurgical Characterization". En MULTISCALE AND FUNCTIONALLY GRADED MATERIALS 2006. AIP, 2008. http://dx.doi.org/10.1063/1.2896851.
Texto completoNouri, Sabrina, Ahmed Benzaoui y Mohamed Benzeghiba. "Numerical Study of the Vertical Solidification Process". En ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASME, 2011. http://dx.doi.org/10.1115/ajtec2011-44099.
Texto completoHayashi, Yujiro, H. Yoshioka y Yukio Tada. "MICRO-SOLIDIFICATION PROCESS IN MULTI-COMPONENT SYSTEM". En Heat Transfer and Transport Phenomena in Microscale. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/1-56700-150-5.390.
Texto completoDelplanque, J. P., E. J. Lavernia y R. H. Rangel. "Simulation of Micro-Pore Formation in Spray Deposition Processes". En ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-1056.
Texto completoLIAO, DUNMING, LILIANG CHEN, JIANXIN ZHOU y RUIXIANG LIU. "MODELING OF THERMAL STRESS DURING CASTING SOLIDIFICATION PROCESS". En Proceedings of the 10th Asia-Pacific Conference. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814324052_0011.
Texto completoMatsunawa, A. y S. Katayama. "Fusion and solidification processes of pulsed YAG laser spot welds". En ICALEO® ‘86: The Changing Frontiers of Laser Materials Processing. Laser Institute of America, 1986. http://dx.doi.org/10.2351/1.5057872.
Texto completoPop, Octavian G., Cristina A. Iuga, Lucian Fechete Tutunaru y Mugur C. Balan. "Experimental Investigation of the Solidification and Melting Processes of PCMs". En 2020 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR). IEEE, 2020. http://dx.doi.org/10.1109/aqtr49680.2020.9129923.
Texto completoInformes sobre el tema "Processus de solidification"
Allen, Jeffrey, Robert Moser, Zackery McClelland, Md Mohaiminul Islam y Ling Liu. Phase-field modeling of nonequilibrium solidification processes in additive manufacturing. Engineer Research and Development Center (U.S.), diciembre de 2021. http://dx.doi.org/10.21079/11681/42605.
Texto completoJohnson. L51924 Evaluation of Welding Consumables and Processes for X100 Steel. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), octubre de 2003. http://dx.doi.org/10.55274/r0010348.
Texto completoPearce, K. L. Solidification process for sludge residue. Office of Scientific and Technical Information (OSTI), septiembre de 1998. http://dx.doi.org/10.2172/10148404.
Texto completoStrain, John A. Numerical Methods for Solidification Processes in Materials Science. Fort Belvoir, VA: Defense Technical Information Center, julio de 1999. http://dx.doi.org/10.21236/ada384342.
Texto completoMorgan, Claire, Katherine Broadwater y William Jolin. Solidification of SRPPF Aqueous Recovery Liquid: Process Disruptions. Office of Scientific and Technical Information (OSTI), octubre de 2024. http://dx.doi.org/10.2172/2460428.
Texto completoM. A. Ebadian, R. C. Xin y Z. F. Dong. Characterization of Transport and Solidification in the Metal Recycling Processes. Office of Scientific and Technical Information (OSTI), agosto de 1997. http://dx.doi.org/10.2172/1298.
Texto completoOkuno, Tomokazu, Ikuo Ihara y Tetsuya Yamaguchi. The Analysis of Solidification Process for Aluminum Die Casting. Warrendale, PA: SAE International, septiembre de 2005. http://dx.doi.org/10.4271/2005-08-0600.
Texto completoAllen, Jeffrey, Robert Moser, Zackery McClelland, Jacob Kallivayalil y Arjun Tekalur. Phase-field simulations of solidification in support of additive manufacturing processes. Engineer Research and Development Center (U.S.), mayo de 2020. http://dx.doi.org/10.21079/11681/36654.
Texto completoMazumder, Prantik. Transport processes in directional solidification and their effects on microstructure development. Office of Scientific and Technical Information (OSTI), noviembre de 1999. http://dx.doi.org/10.2172/754777.
Texto completoLi, Changping. Solidification process in melt spun Nd-Fe-B type magnets. Office of Scientific and Technical Information (OSTI), febrero de 1998. http://dx.doi.org/10.2172/654150.
Texto completo