Literatura académica sobre el tema "Problème des corps roulants"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Problème des corps roulants".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Problème des corps roulants"
Maïdi, Houari. "Le corps du problème". Adolescence 57, n.º 3 (2006): 641. http://dx.doi.org/10.3917/ado.057.0641.
Texto completoMontgomery, Richard. "Le problème des trois corps rebondit". Pour la Science N° 508 - février, n.º 2 (2 de enero de 2020): 26–35. http://dx.doi.org/10.3917/pls.508.0026.
Texto completoPortier, Natacha. "Le problème des grandes puissances et celui des grandes racines". Journal of Symbolic Logic 65, n.º 4 (diciembre de 2000): 1675–85. http://dx.doi.org/10.2307/2695068.
Texto completoWaintal, Xavier. "Le problème à N corps qui se cache derrière l’ordinateur quantique". Reflets de la physique, n.º 70 (octubre de 2021): 18–23. http://dx.doi.org/10.1051/refdp/202170018.
Texto completoBonnel, F., G. Captier y J. F. Vendrell. "Agénésie du corps calleux : problème éthique et malformation". Morphologie 98, n.º 322 (septiembre de 2014): 133. http://dx.doi.org/10.1016/j.morpho.2014.04.079.
Texto completoNaudillon, Françoise. "Le continent noir des corps". Études françaises 41, n.º 2 (28 de septiembre de 2005): 73–85. http://dx.doi.org/10.7202/011379ar.
Texto completoSchultess, Daniel. "L'individuation selon Brentano". Philosophiques 26, n.º 2 (2 de octubre de 2002): 219–30. http://dx.doi.org/10.7202/004981ar.
Texto completoMerlin, Matthieu. "Foucault, le pouvoir et le problème du corps social". Idées économiques et sociales N° 155, n.º 1 (2009): 51. http://dx.doi.org/10.3917/idee.155.0051.
Texto completoGondard, Françoise Delon et Danielle. "XVIIème problème de Hilbert sur les corps chaîne-clos". Journal of Symbolic Logic 56, n.º 3 (septiembre de 1991): 853–61. http://dx.doi.org/10.2178/jsl/1183743733.
Texto completoAlbouy, Alain y Alain Chenciner. "Le problème des n corps et les distances mutuelles". Inventiones Mathematicae 131, n.º 1 (17 de diciembre de 1997): 151–84. http://dx.doi.org/10.1007/s002220050200.
Texto completoTesis sobre el tema "Problème des corps roulants"
Manríquez, Peñafiel Ronald. "Local approximation by linear systems and Almost-Riemannian Structures on Lie groups and Continuation method in rolling problem with obstacles". Electronic Thesis or Diss., université Paris-Saclay, 2022. https://theses.hal.science/tel-03716186.
Texto completoThe aim of this thesis is to study two topics in sub-Riemannian geometry. On the one hand, the local approximation of an almost-Riemannian structure at singular points, and on the other hand, the kinematic system of a 2-dimensional manifold rolling (without twisting or slipping) on the Euclidean plane with forbidden regions. A n-dimensional almost-Riemannian structure can be defined locally by n vector fields satisfying the Lie algebra rank condition, playing the role of an orthonormal frame. The set of points where these vector fields are colinear is called the singular set (Z). At tangency points, i.e., points where the linear span of the vector fields is equal to the tangent space of Z, the nilpotent approximation can be replaced by the solvable one. In this thesis, under generic conditions, we state the order of approximation of the original distance by d ̃ (the distance induced by the solvable approximation), and we prove that d ̃ is closer than the distance induced by the nilpotent approximation to the original distance. Regarding the structure of the approximating system, the Lie algebra generated by this new family of vector fields is finite-dimensional and solvable (in the generic case). Moreover, the solvable approximation is equivalent to a linear ARS on a homogeneous space or a Lie group. On the other hand, nonholonomic systems have attracted the attention of many authors from different disciplines for their varied applications, mainly in robotics. The rolling-body problem (without slipping or spinning) of a 2-dimensional Riemannian manifold on another one can be written as a nonholonomic system. Many methods, algorithms, and techniques have been developed to solve it. A numerical implementation of the Continuation Method to solve the problem in which a convex surface rolls on the Euclidean plane with forbidden regions (or obstacles) without slipping or spinning is performed. Several examples are illustrated
Stewart, Bronwyn. "Dynamique et stabilité de l'écoulement autour de corps non profilés roulants". Phd thesis, Université de Provence - Aix-Marseille I, 2008. http://tel.archives-ouvertes.fr/tel-00436896.
Texto completoStewart, Bronwyn Elaine. "Dynamique et stabilité de l'écoulement autour de corps non profilés roulants". Aix-Marseille 1, 2008. http://theses.univ-amu.fr.lama.univ-amu.fr/2008AIX11057.pdf.
Texto completoA numerical and experimental study of the flow around rolling and sliding bodies is presented. The body geometry is fixed as being either spherical or cylindrical and the Reynolds number of the flow is restricted to Re ≤ 500. This range is sufficient to capture the primary two- and three-dimensional transitions in the flow. The primary aim of this study is to understand the effects of body rotation and a nearby wall on the flow transitions when these effects are acting in tandem. In the case of the cylinder moving along the wall, both two- and three-dimensional flows are investigated and the results of a linear stability analysis are reported. The flow around a rolling and sliding sphere is investigated using both experiments and three-dimensional simulations. The parameter space under consideration is defined in terms of the Reynolds number, based on the body diameter, and the rotation rate of the body, α. For a body moving along a wall in a quiescent fluid, the rotation rate corresponds to the ratio of tangential velocity on the surface of the body to the translational velocity. Five discrete values of the rotation rate have been selected, α = 1, 0. 5, 0, −0. 5 and −1. These range from ‘normal’ rolling, where there is no slip between the body and the wall, to reversed rolling, where the body rotates in the opposite sense. This range is selected to correspond with the range of rotation rates observed in experiments of freely rolling bodies with and without lubrication effects. [. . . ]
Gremaud, Benoit. "Problème coulombien à trois corps en mécanique quantique". Phd thesis, Université Pierre et Marie Curie - Paris VI, 1997. http://tel.archives-ouvertes.fr/tel-00011786.
Texto completoRoccia, Jérome. "Densité de niveaux du problème a n-corps". Paris 11, 2007. http://www.theses.fr/2007PA112136.
Texto completoWe investigate the many-body level density rho_MB for fermion and boson gases. We establish its behavior as a function of the temperature and the number of particules. We deal with correction terms due to finite number of particles effects for rho_MB : for fermions, it seems that it exists only one behavior whereas the case of bosons. Besides we propose a semiclassical expression of rho_MB for two types of particules with an angular momentum. It is decomposed into a smooth part coming from the saddle point method plus corrective terms due to the expansion of the number of partitions for two types of particles and an oscillating part coming from the fluctuations of the single-particle level density. Our model is validated by a numerical study. For the case of the atomic nucleus, the oscillating part of rho_MB is controled by a temperature factor which depends on the chaotic or integrable nature of the system and depends on the fluctuation of the ground state energy. This leads to consider in more detail this last quantity. For an isolated system, we give the general expression of the mean value for fixed potentials. We treat the self-bound system case through the example of the three dimensional harmonic oscillator (3DHO). Furthermore we study the oscillating part of rho_MB for bosons in the low temperature regime for billiards and for isotropic 3DHO. We note the oscillations disappear leading to a power law correction. In the case of the isotropic 3DHO, these corrections have the same order of magnitude as the smooth part. In the same way, for the high temperature regime we show the oscillating part of rho_MB is exponentially negligeable compared to the smooth part
Roccia, Jerome. "La Densité de niveaux du Problème à N-corps". Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00176867.
Texto completoRollin, Guillaume. "Chaos dynamique dans le problème à trois corps restreint". Thesis, Besançon, 2015. http://www.theses.fr/2015BESA2028/document.
Texto completoThis work is devoted to the study of the restricted 3-body problem and particularly to the capture-evolution-ejection process of particles by binary systems (star-planet, binary star, star-supermassive black hole, binary black hole, ...). First, using a generalized Kepler map, we describe, through the case of 1P/Halley, the chaotic dynamics of comets in the Solar System. The here considered binary system is the couple Sun-Jupiter. The symplectic application we use allows us to depict the main characteristics of the dynamics: chaotic trajectories, KAM islands associated to resonances with Jupiter orbital motion, ... We determine exactly and semi-analytically the exchange of energy (kick function) between the Solar System and 1P/Halley at its passage at perihelion. This kick function is the sum of the contributions of 3-body problems Sun-planet-comet associated to the eight planets. We show that each one of these contributions can be split in a keplerian term associated to the planet gravitational potential and a dipolar term due to the Sun movement around Solar System center of mass. We also use the generalized Kepler map to study the capture of dark matter particles by binary systems. We derive the capture cross section showing that long range capture is far more efficient than close encounter induced capture. We show the importance of the rotation velocity of the binary in the capture process. Particularly, a binary system with an ultrafast rotation velocity accumulates a density of captured matter up to 10^4 times the density of the incoming flow of matter. Finally, by direct integration of the planar restricted 3-body problem equations of motion, we study the ejection of particles initially captured by a binary system. In the case of a binary with two components of comparable masses, although almost all the particles are immediately ejected, we show, on Poincaré sections, that the trace of remaining particles in the vicinity of the binary form a fractal structure associated to a strange repeller associated to chaotic open systems. This fractal structure, also present in real space, has a shape of two arm spiral sharing similarities with spiral structures observed in galaxies such as the Milky Way
Boumerzoug, Mohamed Saddek. "Méthode variationnelle dans le problème quantique de trois corps". Thèse, Université du Québec à Trois-Rivières, 1986. http://depot-e.uqtr.ca/5800/1/000561744.pdf.
Texto completoNdiaye, El Hadji Oumar. "Etude du problème du logarithme discret dans les corps finis". Limoges, 1994. http://www.theses.fr/1994LIMO0025.
Texto completoNiederman, Laurent. "Résonances et stabilité dans le problème planétaire : solutions de seconde espèce". Paris 6, 1993. http://www.theses.fr/1993PA066615.
Texto completoLibros sobre el tema "Problème des corps roulants"
Martin, Philippe A. Problèmes à N-corps et champs quantiques: Cours élémentaire. Freiburg: Presses polytechniques et universitaires romandes, 1990.
Buscar texto completo1932-, Mattis Daniel Charles, ed. The Many-body problem: An encyclopedia of exactly solved models in one dimension. Singapore: World Scientific, 1993.
Buscar texto completoS, Ferreira L., Fonseca A. C. 1947- y Streit Ludwig 1938-, eds. Models and methods in few-body physics: Proceedings of the 8th autumn school on models and methods in few-body physics, held in Lisboa, Portugal, October 13-18, 1986. Berlin: Springer-Verlag, 1987.
Buscar texto completo1936-, Berman B. L., Gibson B. F. 1938- y International Symposium on the Three-Body Force in the Three-Nucelon System (1986 : George Washington University), eds. The Three-body force in the three-nucleon system: Proceedings of the international symposium held at the George Washington University, Washington, D.C., April 24-26, 1986. Berlin: Springer-Verlag, 1986.
Buscar texto completoMany-particle theory of highly excited semiconductors. Leipzig: B.G. Teubner, 1988.
Buscar texto completoMathematical methods of many-body quantum field theory. Boca Raton: Chapman & Hall/CRC, 2005.
Buscar texto completo1940-, Morrison J., ed. Atomic many-body theory. 2a ed. Berlin: Springer-Verlag, 1986.
Buscar texto completoGebhard, Florian. The mott metal-insulator transition: Models and methods. New York: Springer, 1997.
Buscar texto completoA, Knauf, ed. Classical planar scattering by coulombic potentials. Berlin: Springer, 1992.
Buscar texto completoHenri, Orland, ed. Quantum many-particle systems. Redwood City, Calif: Addison-Wesley Pub. Co., 1988.
Buscar texto completoCapítulos de libros sobre el tema "Problème des corps roulants"
Poincaré, Henri. "Le Problème des Trois Corps (1891)". En Scientific Opportunism L’Opportunisme scientifique, 85–91. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8112-8_6.
Texto completoKowalevski, Sophie. "Sur le problème de la rotation d’un corps solide autour d’un point fixe". En The Kowalevski Property, 317–72. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/crmp/032/18.
Texto completoSwiezawski, Stefan. "Le problème du corps et de la corporéité dans la philosophie du XVe siècle". En Historia Philosophiae Medii Aevi, 967–77. Amsterdam: B.R. Grüner Publishing Company, 1992. http://dx.doi.org/10.1075/zg.142.55swi.
Texto completoRoux, Sandrine. "Des trois notions primitives à Dieu : Le problème corps-esprit chez La Forge et chez Cordemoy". En Occasionalism, 149–68. Turnhout, Belgium: Brepols Publishers, 2019. http://dx.doi.org/10.1484/m.descartes-eb.5.114992.
Texto completoCalza, André y Maurice Contant. "Le problème". En Corps, Sensorialité et Pathologies De la Symbolisation, 43–62. Elsevier, 2012. http://dx.doi.org/10.1016/b978-2-294-70528-1.00006-2.
Texto completo"Le problème du corps noir". En La théorie du chaos en images, 99. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2358-1-069.
Texto completo"Le problème des trois corps". En La théorie du chaos en images, 22–23. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2358-1-015.
Texto completo"Le problème des trois corps". En La théorie du chaos en images, 22–23. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2358-1.c015.
Texto completo"Le problème du corps noir". En La théorie du chaos en images, 99. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2358-1.c069.
Texto completo"Annexe 4 Le problème du « corps noir »". En Vous avez dit : sabbat de sorcières ?, 271–72. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2404-5-016.
Texto completo