Literatura académica sobre el tema "Probability theory"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Probability theory".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Probability theory"
Thun, M. von. "Probability Theory and Probability Semantics". Australasian Journal of Philosophy 79, n.º 4 (diciembre de 2001): 570–71. http://dx.doi.org/10.1080/713659287.
Texto completoKiessler, Peter C. "Measure Theory and Probability Theory". Journal of the American Statistical Association 102, n.º 479 (septiembre de 2007): 1078. http://dx.doi.org/10.1198/jasa.2007.s207.
Texto completoBerckmoes, B., R. Lowen y J. Van Casteren. "Approach theory meets probability theory". Topology and its Applications 158, n.º 7 (abril de 2011): 836–52. http://dx.doi.org/10.1016/j.topol.2011.01.004.
Texto completoLindley, D. V. y Harold Jeffreys. "Theory of Probability". Mathematical Gazette 83, n.º 497 (julio de 1999): 372. http://dx.doi.org/10.2307/3619118.
Texto completoGuionnet, Alice, Roland Speicher y Dan-Virgil Voiculescu. "Free Probability Theory". Oberwolfach Reports 12, n.º 2 (2015): 1571–629. http://dx.doi.org/10.4171/owr/2015/28.
Texto completoGuionnet, Alice, Roland Speicher y Dan-Virgil Voiculescu. "Free Probability Theory". Oberwolfach Reports 15, n.º 4 (16 de diciembre de 2019): 3147–215. http://dx.doi.org/10.4171/owr/2018/53.
Texto completoBhat, B. R. "Modern Probability Theory." Biometrics 42, n.º 4 (diciembre de 1986): 1007. http://dx.doi.org/10.2307/2530732.
Texto completoJeffreys, H., P. A. P. Moran y C. Chatfield. "Theory of Probability." Biometrics 41, n.º 2 (junio de 1985): 597. http://dx.doi.org/10.2307/2530899.
Texto completoSpeicher, Roland. "Free Probability Theory". Jahresbericht der Deutschen Mathematiker-Vereinigung 119, n.º 1 (15 de septiembre de 2016): 3–30. http://dx.doi.org/10.1365/s13291-016-0150-5.
Texto completoMTW y Harold Jeffreys. "Theory of Probability". Journal of the American Statistical Association 94, n.º 448 (diciembre de 1999): 1389. http://dx.doi.org/10.2307/2669965.
Texto completoTesis sobre el tema "Probability theory"
Halliwell, Joe. "Linguistic probability theory". Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/29135.
Texto completoYoumbi, Norbert. "Probability theory on semihypergroups". [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001201.
Texto completoSorokin, Yegor. "Probability theory, fourier transform and central limit theorem". Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1604.
Texto completoJohns, Richard. "A theory of physical probability". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0027/NQ38907.pdf.
Texto completoPerlin, Alex 1974. "Probability theory on Galton-Watson trees". Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8673.
Texto completoIncludes bibliographical references (p. 91).
By a Galton-Watson tree T we mean an infinite rooted tree that starts with one node and where each node has a random number of children independently of the rest of the tree. In the first chapter of this thesis, we prove a conjecture made in [7] for Galton-Watson trees where vertices have bounded number of children not equal to 1. The conjecture states that the electric conductance of such a tree has a continuous distribution. In the second chapter, we study rays in Galton-Watson trees. We establish what concentration of vertices with is given number of children is possible along a ray in a typical tree. We also gauge the size of the collection of all rays with given concentrations of vertices of given degrees.
by Alex Perlin.
Ph.D.
Wang, Jiun-Chau. "Limit theorems in noncommutative probability theory". [Bloomington, Ind.] : Indiana University, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3331258.
Texto completoTitle from PDF t.p. (viewed on Jul 27, 2009). Source: Dissertation Abstracts International, Volume: 69-11, Section: B, page: 6852. Adviser: Hari Bercovici.
Burns, Jonathan. "Recursive Methods in Number Theory, Combinatorial Graph Theory, and Probability". Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5193.
Texto completoChristopher, Fisher Ryan. "Are people naive probability theorists? An examination of the probability theory + variation model". Miami University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=miami1406657670.
Texto completoTarrago, Pierre. "Non-commutative generalization of some probabilistic results from representation theory". Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1123/document.
Texto completoThe subject of this thesis is the non-commutative generalization of some probabilistic results that occur in representation theory. The results of the thesis are divided into three different parts. In the first part of the thesis, we classify all unitary easy quantum groups whose intertwiner spaces are described by non-crossing partitions, and develop the Weingarten calculus on these quantum groups. As an application of the previous work, we recover the results of Diaconis and Shahshahani on the unitary group and extend those results to the free unitary group. In the second part of the thesis, we study the free wreath product. First, we study the free wreath product with the free symmetric group by giving a description of the intertwiner spaces: several probabilistic results are deduced from this description. Then, we relate the intertwiner spaces of a free wreath product with the free product of planar algebras, an object which has been defined by Bisch and Jones. This relation allows us to prove the conjecture of Banica and Bichon. In the last part of the thesis, we prove that the minimal and the Martin boundaries of a graph introduced by Gnedin and Olshanski are the same. In order to prove this, we give some precise estimates on the uniform standard filling of a large ribbon Young diagram. This yields several asymptotic results on the filling of large ribbon Young diagrams
McGillivray, Ivor Edward. "Some applications of Dirichlet forms in probability theory". Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241102.
Texto completoLibros sobre el tema "Probability theory"
Meyer, Paul André. Quantum probability for probabilists. Berlin: Springer-Verlag, 1993.
Buscar texto completoChen, Louis H. Y., Kwok P. Choi, Kaiyuan Hu y Lou Jiann-Hua, eds. Probability Theory. Berlin, Boston: DE GRUYTER, 1992. http://dx.doi.org/10.1515/9783110862829.
Texto completoRudas, Tamás. Probability Theory. 2455 Teller Road, Thousand Oaks California 91320 United States of America: SAGE Publications, Inc., 2004. http://dx.doi.org/10.4135/9781412985482.
Texto completoSinai, Yakov G. Probability Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02845-2.
Texto completoChow, Yuan Shih y Henry Teicher. Probability Theory. New York, NY: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-0504-0.
Texto completoHendricks, Vincent F., Stig Andur Pedersen y Klaus Frovin Jørgensen, eds. Probability Theory. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9648-0.
Texto completoKlenke, Achim. Probability Theory. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56402-5.
Texto completoPakshirajan, R. P. Probability Theory. Gurgaon: Hindustan Book Agency, 2013. http://dx.doi.org/10.1007/978-93-86279-54-5.
Texto completoChow, Yuan Shih y Henry Teicher. Probability Theory. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1950-7.
Texto completoBorkar, Vivek S. Probability Theory. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-0791-7.
Texto completoCapítulos de libros sobre el tema "Probability theory"
O’Hagan, Anthony. "Distribution theory". En Probability, 132–56. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1211-3_6.
Texto completoCohn, Donald L. "Probability". En Measure Theory, 307–71. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6956-8_10.
Texto completoLynch, Scott M. "Probability Theory". En Using Statistics in Social Research, 57–81. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8573-5_5.
Texto completoKoch, Karl-Rudolf. "Probability Theory". En Parameter Estimation and Hypothesis Testing in Linear Models, 87–173. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-02544-4_3.
Texto completoČepin, Marko. "Probability Theory". En Assessment of Power System Reliability, 33–57. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-688-7_4.
Texto completoLista, Luca. "Probability Theory". En Statistical Methods for Data Analysis in Particle Physics, 1–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62840-0_1.
Texto completoDurrett, Rick. "Probability Theory". En Mathematics Unlimited — 2001 and Beyond, 393–405. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56478-9_18.
Texto completoStroock, Daniel W. "Probability Theory". En Mathematics Unlimited — 2001 and Beyond, 1105–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56478-9_57.
Texto completoSucar, Luis Enrique. "Probability Theory". En Probabilistic Graphical Models, 15–26. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6699-3_2.
Texto completoYao, Kai. "Probability Theory". En Uncertain Renewal Processes, 1–25. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9345-7_1.
Texto completoActas de conferencias sobre el tema "Probability theory"
Temlyakov, V. N. "Optimal estimators in learning theory". En Approximation and Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc72-0-23.
Texto completoHelland, Inge S. "Quantum theory as a statistical theory under symmetry". En FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874567.
Texto completoGudder, Stan. "Fuzzy Quantum Probability Theory". En FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874565.
Texto completoPleśniak, W. "Multivariate polynomial inequalities viapluripotential theory and subanalytic geometry methods". En Approximation and Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc72-0-16.
Texto completoChiribella, G., G. M. D'Ariano y Paolo Perinotti. "Informational axioms for quantum theory". En FOUNDATIONS OF PROBABILITY AND PHYSICS - 6. AIP, 2012. http://dx.doi.org/10.1063/1.3688980.
Texto completoPérez-Suárez, Marcos. "Bayesian Intersubjectivity and Quantum Theory". En FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874582.
Texto completoWoesler, Richard. "Problems of Quantum Theory may be Solved by an Emulation Theory of Quantum Physics". En FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874589.
Texto completoVacchini, B. "A Probabilistic View on Decoherence Theory". En FOUNDATIONS OF PROBABILITY AND PHYSICS - 4. AIP, 2007. http://dx.doi.org/10.1063/1.2713491.
Texto completoSverdlov, Roman. "Quantum field theory without Fock space". En FOUNDATIONS OF PROBABILITY AND PHYSICS - 6. AIP, 2012. http://dx.doi.org/10.1063/1.3688986.
Texto completoGregory, Lee. "Quantum Filtering Theory and the Filtering Interpretation". En FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874562.
Texto completoInformes sobre el tema "Probability theory"
Hurley, Michael B. Track Association with Bayesian Probability Theory. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2003. http://dx.doi.org/10.21236/ada417987.
Texto completoGoodman, I. R. y V. M. Bier. A Re-Examination of the Relationship between Fuzzy Set Theory and Probability Theory. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1991. http://dx.doi.org/10.21236/ada240243.
Texto completoSteele, J. M. Probability and Statistics Applied to the Theory of Algorithms. Fort Belvoir, VA: Defense Technical Information Center, abril de 1995. http://dx.doi.org/10.21236/ada295805.
Texto completoSullivan, Keith M. y Ian Grivell. QSIM: A Queueing Theory Model with Various Probability Distribution Functions. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2003. http://dx.doi.org/10.21236/ada414471.
Texto completoOberkampf, William Louis, W. Troy Tucker, Jianzhong Zhang, Lev Ginzburg, Daniel J. Berleant, Scott Ferson, Janos Hajagos y Roger B. Nelsen. Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis. Office of Scientific and Technical Information (OSTI), octubre de 2004. http://dx.doi.org/10.2172/919189.
Texto completoWise, Gary L. Some Applications of Probability and Statistics in Communication Theory and Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1990. http://dx.doi.org/10.21236/ada226869.
Texto completoIlyin, M. E. The distance learning course «Theory of probability, mathematical statistics and random functions». OFERNIO, diciembre de 2018. http://dx.doi.org/10.12731/ofernio.2018.23529.
Texto completoBudhiraja, Amarjit. Stochastic Analysis and Applied Probability(3.3.1): Topics in the Theory and Applications of Stochastic Analysis. Fort Belvoir, VA: Defense Technical Information Center, julio de 2015. http://dx.doi.org/10.21236/ada625850.
Texto completoKott, Phillip S. The Degrees of Freedom of a Variance Estimator in a Probability Sample. RTI Press, agosto de 2020. http://dx.doi.org/10.3768/rtipress.2020.mr.0043.2008.
Texto completoZio, Enrico y Nicola Pedroni. Literature review of methods for representing uncertainty. Fondation pour une culture de sécurité industrielle, diciembre de 2013. http://dx.doi.org/10.57071/124ure.
Texto completo