Libros sobre el tema "Probability learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores mejores libros para su investigación sobre el tema "Probability learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Batanero, Carmen, Egan J. Chernoff, Joachim Engel, Hollylynne S. Lee y Ernesto Sánchez. Research on Teaching and Learning Probability. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31625-3.
Texto completoDasGupta, Anirban. Probability for Statistics and Machine Learning. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9634-3.
Texto completoAggarwal, Charu C. Probability and Statistics for Machine Learning. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53282-5.
Texto completoEgan, J. Chernoff, Engel Joachim, Lee Hollylynne S y Sánchez Ernesto, eds. Research on Teaching and Learning Probability. Cham: Springer, 2016.
Buscar texto completoUnpingco, José. Python for Probability, Statistics, and Machine Learning. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18545-9.
Texto completoUnpingco, José. Python for Probability, Statistics, and Machine Learning. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30717-6.
Texto completoUnpingco, José. Python for Probability, Statistics, and Machine Learning. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04648-3.
Texto completoPowell, Warren B. Optimal learning. Hoboken, New Jersey: Wiley, 2012.
Buscar texto completoPeck, Roxy. Statistics: Learning from data. Australia: Brooks/Cole, Cengage Learning, 2014.
Buscar texto completoKnez, Igor. To know what to know before knowing: Acquisition of functional rules in probabilistic ecologies. Uppsala: Uppsala University, 1992.
Buscar texto completoResearch Institute for Advanced Computer Science (U.S.), ed. Bayesian learning. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1989.
Buscar texto completoERIC Clearinghouse for Science, Mathematics, and Environmental Education., ed. Resources for teaching and learning about probability and statistics. [Columbus, Ohio]: ERIC Clearinghouse for Science, Mathematics and Environmental Education, 1999.
Buscar texto completoauthor, Mak M. W., ed. Machine learning for protein subcellular localization prediction. Boston: De Gruyter, 2015.
Buscar texto completoVapnik, Vladimir Naumovich. The Nature of Statistical Learning Theory. New York, NY: Springer New York, 1995.
Buscar texto completoDasGupta, Anirban. Probability for statistics and machine learning: Fundamentals and advanced topics. New York: Springer, 2011.
Buscar texto completoJin, Tiantian. Effect on Superficial Variability of Examples on Learning Applied Probability. [New York, N.Y.?]: [publisher not identified], 2018.
Buscar texto completoVelleman, Paul F. Learning data analysis with Data desk. New York: W.H. Freeman, 1993.
Buscar texto completoLim, Chee Peng. An incremental adaptive network for on-line, supervised learning and probability estimation. Sheffield: University of Sheffield, Dept. of Automatic Control & Systems Engineering, 1995.
Buscar texto completoGabbay, Dov M. Abductive Reasoning and Learning. Dordrecht: Springer Netherlands, 2000.
Buscar texto completoPalfrey, Thomas R. Testing game-theoretic models of free riding: New evidence on probability bias and learning. Cambridge, Mass: Dept. of Economics, Massachusetts Institute of Technology, 1990.
Buscar texto completoI, Williams Christopher K., ed. Gaussian processes for machine learning. Cambridge, Mass: MIT Press, 2006.
Buscar texto completoRasmussen, Carl Edward. Gaussian processes for machine learning. Cambridge, MA: MIT Press, 2005.
Buscar texto completoVidyasagar, M. Learning and Generalisation: With Applications to Neural Networks. London: Springer London, 2003.
Buscar texto completo1945-, Basak Subhash C., ed. Statistical and machine learning approaches for network analysis. Hoboken, N.J: Wiley, 2012.
Buscar texto completoUnpingco, José. Python for Probability, Statistics, and Machine Learning. Springer, 2016.
Buscar texto completoUnpingco, José. Python for Probability, Statistics, and Machine Learning. Springer, 2020.
Buscar texto completoUnpingco, José. Python for Probability, Statistics, and Machine Learning. Springer, 2019.
Buscar texto completoUnpingco, José. Python for Probability, Statistics, and Machine Learning. Springer London, Limited, 2016.
Buscar texto completoPython for Probability, Statistics, and Machine Learning. Springer International Publishing AG, 2023.
Buscar texto completoPython for Probability, Statistics, and Machine Learning. Springer International Publishing AG, 2022.
Buscar texto completoPeck, Roxy y Chris Olsen. Statistics: Learning from Data. Brooks/Cole, 2013.
Buscar texto completoPeck, Roxy. Statistics: Learning from Data. Brooks/Cole, 2017.
Buscar texto completoPeck, Roxy. Statistics: Learning from Data. Brooks/Cole, 2013.
Buscar texto completoPeck, Roxy. Statistics: Learning from Data. Cengage Learning, 2023.
Buscar texto completoProbability and Statistics for Machine Learning: A Textbook. Springer, 2024.
Buscar texto completoSchrope, Byron. Probability and Its Concepts: Give Your Business an Edge by Learning More about Probability. Independently Published, 2022.
Buscar texto completoKnox, Steven W. Machine Learning: a Concise Introduction (Wiley Series in Probability and Statistics). Wiley, 2018.
Buscar texto completoDuerr, Oliver, Beate Sick y Elvis Murina. Probabilistic Deep Learning: With Python, Keras and TensorFlow Probability. Manning Publications, 2020.
Buscar texto completoBatanero, Carmen y Egan J. Chernoff. Teaching and Learning Stochastics: Advances in Probability Education Research. Springer, 2018.
Buscar texto completoBatanero, Carmen y Egan J. Chernoff. Teaching and Learning Stochastics: Advances in Probability Education Research. Springer, 2019.
Buscar texto completoTomar, Simit. Probability and Statistics for Data Science and Machine Learning. Independently Published, 2020.
Buscar texto completoDuerr, Oliver y Beate Sick. Probabilistic Deep Learning: With Python, Keras and TensorFlow Probability. Manning Publications Co. LLC, 2020.
Buscar texto completoJones, Graham A. Exploring Probability in School: Challenges for Teaching and Learning. Springer, 2010.
Buscar texto completoJones, Graham A. Exploring Probability in School: Challenges for Teaching and Learning. Springer, 2005.
Buscar texto completoAdams, Christopher P. Learning Microeconometrics with R. Taylor & Francis Group, 2020.
Buscar texto completoLearning Microeconometrics with R. Taylor & Francis Group, 2020.
Buscar texto completoDasGupta, Anirban. Probability for Statistics and Machine Learning: Fundamentals and Advanced Topics. Springer, 2013.
Buscar texto completoMachine learning: A probabilistic perspective. Cambridge, MA: MIT Press, 2012.
Buscar texto completoMurphy, Kevin P. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
Buscar texto completoMurphy, Kevin P. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
Buscar texto completo