Literatura académica sobre el tema "Probability learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Probability learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Probability learning"
SAEKI, Daisuke. "Probability learning in golden hamsters". Japanese Journal of Animal Psychology 49, n.º 1 (1999): 41–47. http://dx.doi.org/10.2502/janip.49.41.
Texto completoGroth, Randall E., Jennifer A. Bergner y Jathan W. Austin. "Dimensions of Learning Probability Vocabulary". Journal for Research in Mathematics Education 51, n.º 1 (enero de 2020): 75–104. http://dx.doi.org/10.5951/jresematheduc.2019.0008.
Texto completoGroth, Randall E., Jennifer A. Bergner y Jathan W. Austin. "Dimensions of Learning Probability Vocabulary". Journal for Research in Mathematics Education 51, n.º 1 (enero de 2020): 75–104. http://dx.doi.org/10.5951/jresematheduc.51.1.0075.
Texto completoRivas, Javier. "Probability matching and reinforcement learning". Journal of Mathematical Economics 49, n.º 1 (enero de 2013): 17–21. http://dx.doi.org/10.1016/j.jmateco.2012.09.004.
Texto completoWest, Bruce J. "Fractal Probability Measures of Learning". Methods 24, n.º 4 (agosto de 2001): 395–402. http://dx.doi.org/10.1006/meth.2001.1208.
Texto completoJiang, Xiaolei. "Conditional Probability in Machine Learning". Journal of Education and Educational Research 4, n.º 2 (20 de julio de 2023): 31–33. http://dx.doi.org/10.54097/jeer.v4i2.10647.
Texto completoMalley, J. D., J. Kruppa, A. Dasgupta, K. G. Malley y A. Ziegler. "Probability Machines". Methods of Information in Medicine 51, n.º 01 (2012): 74–81. http://dx.doi.org/10.3414/me00-01-0052.
Texto completoDawson, Michael R. W. "Probability Learning by Perceptrons and People". Comparative Cognition & Behavior Reviews 15 (2022): 1–188. http://dx.doi.org/10.3819/ccbr.2019.140011.
Texto completoHIRASAWA, Kotaro, Masaaki HARADA, Masanao OHBAYASHI, Juuichi MURATA y Jinglu HU. "Probability and Possibility Automaton Learning Network". IEEJ Transactions on Industry Applications 118, n.º 3 (1998): 291–99. http://dx.doi.org/10.1541/ieejias.118.291.
Texto completoGroth, Randall E., Jaime Butler y Delmar Nelson. "Overcoming challenges in learning probability vocabulary". Teaching Statistics 38, n.º 3 (26 de mayo de 2016): 102–7. http://dx.doi.org/10.1111/test.12109.
Texto completoTesis sobre el tema "Probability learning"
Gozenman, Filiz. "Interaction Of Probability Learning And Working Memory". Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614535/index.pdf.
Texto completoRYSZ, TERI. "METACOGNITION IN LEARNING ELEMENTARY PROBABILITY AND STATISTICS". University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1099248340.
Texto completoBouchacourt, Diane. "Task-oriented learning of structured probability distributions". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:0665495b-afbb-483b-8bdf-cbc6ae5baeff.
Texto completoLi, Chengtao Ph D. Massachusetts Institute of Technology. "Diversity-inducing probability measures for machine learning". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121724.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 163-176).
Subset selection problems arise in machine learning within kernel approximation, experimental design, and numerous other applications. In such applications, one often seeks to select diverse subsets of items to represent the population. One way to select such diverse subsets is to sample according to Diversity-Inducing Probability Measures (DIPMs) that assign higher probabilities to more diverse subsets. DIPMs underlie several recent breakthroughs in mathematics and theoretical computer science, but their power has not yet been explored for machine learning. In this thesis, we investigate DIPMs, their mathematical properties, sampling algorithms, and applications. Perhaps the best known instance of a DIPM is a Determinantal Point Process (DPP). DPPs originally arose in quantum physics, and are known to have deep relations to linear algebra, combinatorics, and geometry. We explore applications of DPPs to kernel matrix approximation and kernel ridge regression.
In these applications, DPPs deliver strong approximation guarantees and obtain superior performance compared to existing methods. We further develop an MCMC sampling algorithm accelerated by Gauss-type quadratures for DPPs. The algorithm runs several orders of magnitude faster than the existing ones. DPPs lie in a larger class of DIPMs called Strongly Rayleigh (SR) Measures. Instances of SR measures display a strong negative dependence property known as negative association, and as such can be used to model subset diversity. We study mathematical properties of SR measures, and construct the first provably fast-mixing Markov chain that samples from general SR measures. As a special case, we consider an SR measure called Dual Volume Sampling (DVS), for which we present the first poly-time sampling algorithm.
While all considered distributions over subsets are unconstrained, those of interest in the real world usually come with constraints due to prior knowledge, resource limitations or personal preferences. Hence we investigate sampling from constrained versions of DIPMs. Specifically, we consider DIPMs with cardinality constraints and matroid base constraints and construct poly-time approximate sampling algorithms for them. Such sampling algorithms will enable practical uses of constrained DIPMs in real world.
by Chengtao Li.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Hunt, Gareth David. "Reinforcement Learning for Low Probability High Impact Risks". Thesis, Curtin University, 2019. http://hdl.handle.net/20.500.11937/77106.
Texto completoSłowiński, Witold. "Autonomous learning of domain models from probability distribution clusters". Thesis, University of Aberdeen, 2014. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=211059.
Texto completoBenson, Carol Trinko Jones Graham A. "Assessing students' thinking in modeling probability contexts". Normal, Ill. Illinois State University, 2000. http://wwwlib.umi.com/cr/ilstu/fullcit?p9986725.
Texto completoTitle from title page screen, viewed May 11, 2006. Dissertation Committee: Graham A. Jones (chair), Kenneth N. Berk, Patricia Klass, Cynthia W. Langrall, Edward S. Mooney. Includes bibliographical references (leaves 115-124) and abstract. Also available in print.
Rast, Jeanne D. "A Comparison of Learning Subjective and Traditional Probability in Middle Grades". Digital Archive @ GSU, 2005. http://digitalarchive.gsu.edu/msit_diss/4.
Texto completoLindsay, David George. "Machine learning techniques for probability forecasting and their practical evaluations". Thesis, Royal Holloway, University of London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445274.
Texto completoKornfeld, Sarah. "Predicting Default Probability in Credit Risk using Machine Learning Algorithms". Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275656.
Texto completoDenna uppsats har undersökt internt utvecklade modeller för att estimera sannolikheten för utebliven betalning (PD) inom kreditrisk. Samtidigt som nya regelverk sätter restriktioner på metoder för modellering av kreditrisk och i viss mån hämmar utvecklingen av riskmätning, utvecklas samtidigt mer avancerade metoder inom maskinlärning för riskmätning. Således har avvägningen mellan strängare regelverk av internt utvecklade modeller och framsteg i dataanalys undersökts genom jämförelse av modellprestanda för referens metoden logistisk regression för uppskattning av PD med maskininlärningsteknikerna beslutsträd, Random Forest, Gradient Boosting och artificiella neurala nätverk (ANN). Dataunderlaget kommer från SEB och består utav 45 variabler och 24 635 observationer. När maskininlärningsteknikerna blir mer komplexa för att gynna förbättrad prestanda är det ofta på bekostnad av modellens tolkbarhet. En undersökande analys gjordes därför med målet att mäta förklarningsvariablers betydelse i maskininlärningsteknikerna. Resultaten från den undersökande analysen kommer att jämföras med resultat från etablerade metoder som mäter variabelsignifikans. Resultatet av studien visar att den logistiska regressionen presterade bättre än maskininlärningsteknikerna baserat på prestandamåttet AUC som mätte 0.906. Resultatet from den undersökande analysen för förklarningsvariablers betydelse ökade tolkbarheten för maskininlärningsteknikerna. Resultatet blev även validerat med utkomsten av de etablerade metoderna för att mäta variabelsignifikans.
Libros sobre el tema "Probability learning"
Batanero, Carmen, Egan J. Chernoff, Joachim Engel, Hollylynne S. Lee y Ernesto Sánchez. Research on Teaching and Learning Probability. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31625-3.
Texto completoDasGupta, Anirban. Probability for Statistics and Machine Learning. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9634-3.
Texto completoAggarwal, Charu C. Probability and Statistics for Machine Learning. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53282-5.
Texto completoEgan, J. Chernoff, Engel Joachim, Lee Hollylynne S y Sánchez Ernesto, eds. Research on Teaching and Learning Probability. Cham: Springer, 2016.
Buscar texto completoUnpingco, José. Python for Probability, Statistics, and Machine Learning. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18545-9.
Texto completoUnpingco, José. Python for Probability, Statistics, and Machine Learning. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30717-6.
Texto completoUnpingco, José. Python for Probability, Statistics, and Machine Learning. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04648-3.
Texto completoPowell, Warren B. Optimal learning. Hoboken, New Jersey: Wiley, 2012.
Buscar texto completoPeck, Roxy. Statistics: Learning from data. Australia: Brooks/Cole, Cengage Learning, 2014.
Buscar texto completoKnez, Igor. To know what to know before knowing: Acquisition of functional rules in probabilistic ecologies. Uppsala: Uppsala University, 1992.
Buscar texto completoCapítulos de libros sobre el tema "Probability learning"
Glenberg, Arthur M. y Matthew E. Andrzejewski. "Probability". En Learning From Data, 105–19. 4a ed. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003025405-6.
Texto completoZeugmann, Thomas, Pascal Poupart, James Kennedy, Xin Jin, Jiawei Han, Lorenza Saitta, Michele Sebag et al. "Posterior Probability". En Encyclopedia of Machine Learning, 780. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_648.
Texto completoZeugmann, Thomas, Pascal Poupart, James Kennedy, Xin Jin, Jiawei Han, Lorenza Saitta, Michele Sebag et al. "Prior Probability". En Encyclopedia of Machine Learning, 782. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_658.
Texto completoKumar Singh, Bikesh y G. R. Sinha. "Probability Theory". En Machine Learning in Healthcare, 23–33. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003097808-2.
Texto completoUnpingco, José. "Probability". En Python for Probability, Statistics, and Machine Learning, 35–100. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30717-6_2.
Texto completoUnpingco, José. "Probability". En Python for Probability, Statistics, and Machine Learning, 39–121. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18545-9_2.
Texto completoUnpingco, José. "Probability". En Python for Probability, Statistics, and Machine Learning, 47–134. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04648-3_2.
Texto completoFaul, A. C. "Probability Theory". En A Concise Introduction to Machine Learning, 7–61. Boca Raton, Florida : CRC Press, [2019] | Series: Chapman & Hall/CRC machine learning & pattern recognition: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781351204750-2.
Texto completoAggarwal, Charu C. "Probability Distributions". En Probability and Statistics for Machine Learning, 127–90. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53282-5_4.
Texto completoGhatak, Abhijit. "Probability and Distributions". En Machine Learning with R, 31–56. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6808-9_2.
Texto completoActas de conferencias sobre el tema "Probability learning"
Temlyakov, V. N. "Optimal estimators in learning theory". En Approximation and Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc72-0-23.
Texto completoNeville, Jennifer, David Jensen, Lisa Friedland y Michael Hay. "Learning relational probability trees". En the ninth ACM SIGKDD international conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/956750.956830.
Texto completoArieli, Itai, Yakov Babichenko y Manuel Mueller-Frank. "Naive Learning Through Probability Matching". En EC '19: ACM Conference on Economics and Computation. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3328526.3329601.
Texto completoSánchez, Emesta, Sibel Kazak y Egan J. Chernoff. "Teaching and Learning of Probability". En The 14th International Congress on Mathematical Education. WORLD SCIENTIFIC, 2024. http://dx.doi.org/10.1142/9789811287152_0035.
Texto completoHa, Ming-hu, Zhi-fang Feng, Er-ling Du y Yun-chao Bai. "Further Discussion on Quasi-Probability". En 2006 International Conference on Machine Learning and Cybernetics. IEEE, 2006. http://dx.doi.org/10.1109/icmlc.2006.258542.
Texto completoBurgos, María, María Del Mar López-Martín y Nicolás Tizón-Escamilla. "ALGEBRAIC REASONING IN PROBABILITY TASKS". En 14th International Conference on Education and New Learning Technologies. IATED, 2022. http://dx.doi.org/10.21125/edulearn.2022.0777.
Texto completoHerlau, Tue. "Active learning of causal probability trees". En 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2022. http://dx.doi.org/10.1109/icmla55696.2022.00193.
Texto completoEugênio, Robson, Carlos Monteiro, Liliane Carvalho, José Roberto Costa Jr. y Karen François. "MATHEMATICS TEACHERS LEARNING ABOUT PROBABILITY LITERACY". En 14th International Technology, Education and Development Conference. IATED, 2020. http://dx.doi.org/10.21125/inted.2020.0272.
Texto completoStruski, Łukasz, Adam Pardyl, Jacek Tabor y Bartosz Zieliński. "ProPML: Probability Partial Multi-label Learning". En 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2023. http://dx.doi.org/10.1109/dsaa60987.2023.10302620.
Texto completoRamishetty, Sravani y Abolfazl Hashemi. "High Probability Guarantees For Federated Learning". En 2023 59th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2023. http://dx.doi.org/10.1109/allerton58177.2023.10313468.
Texto completoInformes sobre el tema "Probability learning"
Shute, Valerie J. y Lisa A. Gawlick-Grendell. An Experimental Approach to Teaching and Learning Probability: Stat Lady. Fort Belvoir, VA: Defense Technical Information Center, abril de 1996. http://dx.doi.org/10.21236/ada316969.
Texto completoIlyin, M. E. The distance learning course «Theory of probability, mathematical statistics and random functions». OFERNIO, diciembre de 2018. http://dx.doi.org/10.12731/ofernio.2018.23529.
Texto completoKriegel, Francesco. Learning description logic axioms from discrete probability distributions over description graphs (Extended Version). Technische Universität Dresden, 2018. http://dx.doi.org/10.25368/2022.247.
Texto completoKriegel, Francesco. Learning General Concept Inclusions in Probabilistic Description Logics. Technische Universität Dresden, 2015. http://dx.doi.org/10.25368/2022.220.
Texto completoGribok, Andrei V., Kevin P. Chen y Qirui Wang. Machine-Learning Enabled Evaluation of Probability of Piping Degradation In Secondary Systems of Nuclear Power Plants. Office of Scientific and Technical Information (OSTI), mayo de 2020. http://dx.doi.org/10.2172/1634815.
Texto completode Luis, Mercedes, Emilio Rodríguez y Diego Torres. Machine learning applied to active fixed-income portfolio management: a Lasso logit approach. Madrid: Banco de España, septiembre de 2023. http://dx.doi.org/10.53479/33560.
Texto completoDinarte, Lelys, Pablo Egaña del Sol y Claudia Martínez. When Emotion Regulation Matters: The Efficacy of Socio-Emotional Learning to Address School-Based Violence in Central America. Inter-American Development Bank, marzo de 2024. http://dx.doi.org/10.18235/0012854.
Texto completoMoreno Pérez, Carlos y Marco Minozzo. “Making Text Talk”: The Minutes of the Central Bank of Brazil and the Real Economy. Madrid: Banco de España, noviembre de 2022. http://dx.doi.org/10.53479/23646.
Texto completoRobson, Jennifer. The Canada Learning Bond, financial capability and tax-filing: Results from an online survey of low and modest income parents. SEED Winnipeg/Carleton University Arthur Kroeger College of Public Affairs, marzo de 2022. http://dx.doi.org/10.22215/clb20220301.
Texto completoSchiefelbein, Ernesto, Paulina Schiefelbein y Laurence Wolff. Cost-Effectiveness of Education Policies in Latin America: A Survey of Expert Opinion. Inter-American Development Bank, diciembre de 1998. http://dx.doi.org/10.18235/0008789.
Texto completo