Índice
Literatura académica sobre el tema "Probability-Graphons"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Probability-Graphons".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Probability-Graphons"
Ackerman, Nate, Cameron E. Freer, Younesse Kaddar, Jacek Karwowski, Sean Moss, Daniel Roy, Sam Staton y Hongseok Yang. "Probabilistic Programming Interfaces for Random Graphs: Markov Categories, Graphons, and Nominal Sets". Proceedings of the ACM on Programming Languages 8, POPL (5 de enero de 2024): 1819–49. http://dx.doi.org/10.1145/3632903.
Texto completoMcMillan, Audra y Adam Smith. "When is non-trivial estimation possible for graphons and stochastic block models?‡". Information and Inference: A Journal of the IMA 7, n.º 2 (23 de agosto de 2017): 169–81. http://dx.doi.org/10.1093/imaiai/iax010.
Texto completoZHAO, YUFEI. "On the Lower Tail Variational Problem for Random Graphs". Combinatorics, Probability and Computing 26, n.º 2 (16 de agosto de 2016): 301–20. http://dx.doi.org/10.1017/s0963548316000262.
Texto completoBraides, Andrea, Paolo Cermelli y Simone Dovetta. "Γ-limit of the cut functional on dense graph sequences". ESAIM: Control, Optimisation and Calculus of Variations 26 (2020): 26. http://dx.doi.org/10.1051/cocv/2019029.
Texto completoHATAMI, HAMED y SERGUEI NORINE. "The Entropy of Random-Free Graphons and Properties". Combinatorics, Probability and Computing 22, n.º 4 (16 de mayo de 2013): 517–26. http://dx.doi.org/10.1017/s0963548313000175.
Texto completoKeliger, Dániel, Illés Horváth y Bálint Takács. "Local-density dependent Markov processes on graphons with epidemiological applications". Stochastic Processes and their Applications 148 (junio de 2022): 324–52. http://dx.doi.org/10.1016/j.spa.2022.03.001.
Texto completoBackhausz, Ágnes y Dávid Kunszenti-Kovács. "On the dense preferential attachment graph models and their graphon induced counterpart". Journal of Applied Probability 56, n.º 2 (junio de 2019): 590–601. http://dx.doi.org/10.1017/jpr.2019.34.
Texto completoBackhausz, Ágnes y Balázs Szegedy. "Action convergence of operators and graphs". Canadian Journal of Mathematics, 17 de septiembre de 2020, 1–50. http://dx.doi.org/10.4153/s0008414x2000070x.
Texto completoMarkering, Maarten. "The Large Deviation Principle for Inhomogeneous Erdős–Rényi Random Graphs". Journal of Theoretical Probability, 14 de junio de 2022. http://dx.doi.org/10.1007/s10959-022-01181-1.
Texto completoJanssen, Jeannette y Aaron Smith. "Reconstruction of line-embeddings of graphons". Electronic Journal of Statistics 16, n.º 1 (1 de enero de 2022). http://dx.doi.org/10.1214/21-ejs1940.
Texto completoTesis sobre el tema "Probability-Graphons"
Weibel, Julien. "Graphons de probabilités, limites de graphes pondérés aléatoires et chaînes de Markov branchantes cachées". Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1031.
Texto completoGraphs are mathematical objects used to model all kinds of networks, such as electrical networks, communication networks, and social networks. Formally, a graph consists of a set of vertices and a set of edges connecting pairs of vertices. The vertices represent, for example, individuals, while the edges represent the interactions between these individuals. In the case of a weighted graph, each edge has a weight or a decoration that can model a distance, an interaction intensity, or a resistance. Modeling real-world networks often involves large graphs with a large number of vertices and edges.The first part of this thesis is dedicated to introducing and studying the properties of the limit objects of large weighted graphs : probability-graphons. These objects are a generalization of graphons introduced and studied by Lovász and his co-authors in the case of unweighted graphs. Starting from a distance that induces the weak topology on measures, we define a cut distance on probability-graphons. We exhibit a tightness criterion for probability-graphons related to relative compactness in the cut distance. Finally, we prove that this topology coincides with the topology induced by the convergence in distribution of the sampled subgraphs. In the second part of this thesis, we focus on hidden Markov models indexed by trees. We show the strong consistency and asymptotic normality of the maximum likelihood estimator for these models under standard assumptions. We prove an ergodic theorem for branching Markov chains indexed by trees with general shapes. Finally, we show that for a stationary and reversible chain, the line graph is the tree shape that induces the minimal variance for the empirical mean estimator among trees with a given number of vertices