Literatura académica sobre el tema "Probabilistic preorder"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Probabilistic preorder".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Probabilistic preorder"
BAIER, CHRISTEL y MARTA KWIATKOWSKA. "Domain equations for probabilistic processes". Mathematical Structures in Computer Science 10, n.º 6 (diciembre de 2000): 665–717. http://dx.doi.org/10.1017/s0960129599002984.
Texto completoHERNANDEZ, ENRIC y JORDI RECASENS. "ON POSSIBILISTIC AND PROBABILISTIC APPROXIMATIONS OF UNRESTRICTED BELIEF FUNCTIONS BASED ON THE CONCEPT OF FUZZY T-PREORDER". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, n.º 02 (abril de 2002): 185–200. http://dx.doi.org/10.1142/s0218488502001417.
Texto completoCleaveland, Rance, Zeynep Dayar, Scott A. Smolka y Shoji Yuen. "Testing Preorders for Probabilistic Processes". Information and Computation 154, n.º 2 (noviembre de 1999): 93–148. http://dx.doi.org/10.1006/inco.1999.2808.
Texto completoJonsson, Bengt y Wang Yi. "Testing preorders for probabilistic processes can be characterized by simulations". Theoretical Computer Science 282, n.º 1 (junio de 2002): 33–51. http://dx.doi.org/10.1016/s0304-3975(01)00044-5.
Texto completoDeng, Yuxin y Alwen Tiu. "Characterisations of testing preorders for a finite probabilistic π-calculus". Formal Aspects of Computing 24, n.º 4-6 (29 de junio de 2012): 701–26. http://dx.doi.org/10.1007/s00165-012-0238-3.
Texto completoAguirre, Alejandro y Lars Birkedal. "Step-Indexed Logical Relations for Countable Nondeterminism and Probabilistic Choice". Proceedings of the ACM on Programming Languages 7, POPL (9 de enero de 2023): 33–60. http://dx.doi.org/10.1145/3571195.
Texto completoDeng, Yuxin, Robert van Glabbeek, Matthew Hennessy y Carroll Morgan. "Characterising Testing Preorders for Finite Probabilistic Processes". Logical Methods in Computer Science 4, n.º 4 (28 de octubre de 2008). http://dx.doi.org/10.2168/lmcs-4(4:4)2008.
Texto completoWild, Paul y Lutz Schröder. "Characteristic Logics for Behavioural Hemimetrics via Fuzzy Lax Extensions". Logical Methods in Computer Science Volume 18, Issue 2 (15 de junio de 2022). http://dx.doi.org/10.46298/lmcs-18(2:19)2022.
Texto completoTesis sobre el tema "Probabilistic preorder"
Sato, Tetsuya. "Identifying All Preorders on the Subdistribution Monad". 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199080.
Texto completoPARMA, Augusto. "Axiomatic and logical characterizations of probabilistic preorders and trace semantics". Doctoral thesis, 2008. http://hdl.handle.net/11562/337598.
Texto completoRandomization was first introduced in computer science in order to improve the efficiency of several problems that were classified unfeasible or particularly inefficient, by giving algorithms the ability to flip coins, that is, of making probabilistic choices at some point of the computation. In the paper Probabilistic Algorithms, Rabin proposed efficient solutions to the problems of determining the nearest neighbor and to state the primality of a given number, for which there were no efficient non-probabilistic solutions. Later, he applied probability to a problem of distributed computing, which was not feasible without the use of randomiza- tion. On the base of these important results, a large set of problems were solved with the use of probabilistic choices in the computation, and a wide range of applications and modelings were proposed in the framework of concurrency theory. However, together with probabilistic behaviors, in the modeling and verification of concurrent processes it is crucial to take into account the presence of a phenomenon called nondeterminism. In general, nondeterminism is a way to model the lack of knowledge about the relative speeds of two or more processes running in parallel, as it may not be possible to determine which of the processes is performing the next action. On the other hand, there are further circumstances in which nondeterminism arises and must be modeled in order to obtain a correct description of the possible behaviors of a process. In particular, the external choices made by the environment in order to condition the execution of a process are modeled as nondeterministic choices, since the decisions taken by a user or by a malicious entity may not be predictable a priori by the system. Furthermore, since a semantic model of a process can be seen as a specification of the process, the introduction of nondeterministic choices in the model may reflect the ability to implement the specification by choosing one of the possible alternatives given, all leading to consistent implementations. The kinds of nondeterministic behaviors described can be all referred to as pure nondeterminism, in contrast with the probabilistic nondeterminism, which models the fact that events are governed by probability distributions.
Capítulos de libros sobre el tema "Probabilistic preorder"
Cleaveland, Rance, Scott A. Smolka y Amy Zwarico. "Testing preorders for probabilistic processes". En Automata, Languages and Programming, 708–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-55719-9_116.
Texto completoYuen, Shoji, Rance Cleaveland, Zeynep Dayar y Scott A. Smolka. "Fully Abstract Characterizations of Testing Preorders for Probabilistic Processes". En CONCUR '94: Concurrency Theory, 497–512. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-540-48654-1_36.
Texto completoHöhle, Ulrich. "Many-Valued Preorders II: The Symmetry Axiom and Probabilistic Geometry". En Enric Trillas: A Passion for Fuzzy Sets, 151–65. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16235-5_11.
Texto completoGaboardi, Marco, Shin-ya Katsumata, Dominic Orchard y Tetsuya Sato. "Graded Hoare Logic and its Categorical Semantics". En Programming Languages and Systems, 234–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72019-3_9.
Texto completoCastagnoli, Erio, Marzia De Donno, Gino Favero y Paola Modesti. "A Different Way to Look at Random Variables". En Analyzing Risk through Probabilistic Modeling in Operations Research, 179–99. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9458-3.ch008.
Texto completoActas de conferencias sobre el tema "Probabilistic preorder"
Deng, Yuxin, Rob van Glabbeek, Matthew Hennessy, Carroll Morgan y Chenyi Zhang. "Characterising Testing Preorders for Finite Probabilistic Processes". En 2007 22nd Annual IEEE Symposium on Logic in Computer Science. IEEE, 2007. http://dx.doi.org/10.1109/lics.2007.15.
Texto completo