Artículos de revistas sobre el tema "Probabilistic deep models"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Probabilistic deep models".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Masegosa, Andrés R., Rafael Cabañas, Helge Langseth, Thomas D. Nielsen y Antonio Salmerón. "Probabilistic Models with Deep Neural Networks". Entropy 23, n.º 1 (18 de enero de 2021): 117. http://dx.doi.org/10.3390/e23010117.
Texto completoVillanueva Llerena, Julissa y Denis Deratani Maua. "Efficient Predictive Uncertainty Estimators for Deep Probabilistic Models". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 10 (3 de abril de 2020): 13740–41. http://dx.doi.org/10.1609/aaai.v34i10.7142.
Texto completoKarami, Mahdi y Dale Schuurmans. "Deep Probabilistic Canonical Correlation Analysis". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 9 (18 de mayo de 2021): 8055–63. http://dx.doi.org/10.1609/aaai.v35i9.16982.
Texto completoLu, Ming, Zhihao Duan, Fengqing Zhu y Zhan Ma. "Deep Hierarchical Video Compression". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 8 (24 de marzo de 2024): 8859–67. http://dx.doi.org/10.1609/aaai.v38i8.28733.
Texto completoMaroñas, Juan, Roberto Paredes y Daniel Ramos. "Calibration of deep probabilistic models with decoupled bayesian neural networks". Neurocomputing 407 (septiembre de 2020): 194–205. http://dx.doi.org/10.1016/j.neucom.2020.04.103.
Texto completoLi, Zhenjun, Xi Liu, Dawei Kou, Yi Hu, Qingrui Zhang y Qingxi Yuan. "Probabilistic Models for the Shear Strength of RC Deep Beams". Applied Sciences 13, n.º 8 (12 de abril de 2023): 4853. http://dx.doi.org/10.3390/app13084853.
Texto completoSerpell, Cristián, Ignacio A. Araya, Carlos Valle y Héctor Allende. "Addressing model uncertainty in probabilistic forecasting using Monte Carlo dropout". Intelligent Data Analysis 24 (4 de diciembre de 2020): 185–205. http://dx.doi.org/10.3233/ida-200015.
Texto completoBoursin, Nicolas, Carl Remlinger y Joseph Mikael. "Deep Generators on Commodity Markets Application to Deep Hedging". Risks 11, n.º 1 (23 de diciembre de 2022): 7. http://dx.doi.org/10.3390/risks11010007.
Texto completoZuidberg Dos Martires, Pedro. "Probabilistic Neural Circuits". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 15 (24 de marzo de 2024): 17280–89. http://dx.doi.org/10.1609/aaai.v38i15.29675.
Texto completoRavuri, Suman, Karel Lenc, Matthew Willson, Dmitry Kangin, Remi Lam, Piotr Mirowski, Megan Fitzsimons et al. "Skilful precipitation nowcasting using deep generative models of radar". Nature 597, n.º 7878 (29 de septiembre de 2021): 672–77. http://dx.doi.org/10.1038/s41586-021-03854-z.
Texto completoAdams, Jadie. "Probabilistic Shape Models of Anatomy Directly from Images". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 13 (26 de junio de 2023): 16107–8. http://dx.doi.org/10.1609/aaai.v37i13.26914.
Texto completoQian, Weizhu, Fabrice Lauri y Franck Gechter. "Supervised and semi-supervised deep probabilistic models for indoor positioning problems". Neurocomputing 435 (mayo de 2021): 228–38. http://dx.doi.org/10.1016/j.neucom.2020.12.131.
Texto completoSinha, Mourani, Mrinmoyee Bhattacharya, M. Seemanth y Suchandra A. Bhowmick. "Probabilistic Models and Deep Learning Models Assessed to Estimate Design and Operational Ocean Wave Statistics to Reduce Coastal Hazards". Geosciences 13, n.º 12 (12 de diciembre de 2023): 380. http://dx.doi.org/10.3390/geosciences13120380.
Texto completoAndrianomena, Sambatra. "Probabilistic learning for pulsar classification". Journal of Cosmology and Astroparticle Physics 2022, n.º 10 (1 de octubre de 2022): 016. http://dx.doi.org/10.1088/1475-7516/2022/10/016.
Texto completoD’Andrea, Fabio, Pierre Gentine, Alan K. Betts y Benjamin R. Lintner. "Triggering Deep Convection with a Probabilistic Plume Model". Journal of the Atmospheric Sciences 71, n.º 11 (29 de octubre de 2014): 3881–901. http://dx.doi.org/10.1175/jas-d-13-0340.1.
Texto completoMurad, Abdulmajid, Frank Alexander Kraemer, Kerstin Bach y Gavin Taylor. "Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting". Sensors 21, n.º 23 (30 de noviembre de 2021): 8009. http://dx.doi.org/10.3390/s21238009.
Texto completoBuda-Ożóg, Lidia. "Probabilistic assessment of load-bearing capacity of deep beams designed by strut-and-tie method". MATEC Web of Conferences 262 (2019): 08001. http://dx.doi.org/10.1051/matecconf/201926208001.
Texto completoDuan, Yun. "A Novel Interval Energy-Forecasting Method for Sustainable Building Management Based on Deep Learning". Sustainability 14, n.º 14 (13 de julio de 2022): 8584. http://dx.doi.org/10.3390/su14148584.
Texto completoMashlakov, Aleksei, Toni Kuronen, Lasse Lensu, Arto Kaarna y Samuli Honkapuro. "Assessing the performance of deep learning models for multivariate probabilistic energy forecasting". Applied Energy 285 (marzo de 2021): 116405. http://dx.doi.org/10.1016/j.apenergy.2020.116405.
Texto completoLiu, Mao-Yi, Zheng Li y Hang Zhang. "Probabilistic Shear Strength Prediction for Deep Beams Based on Bayesian-Optimized Data-Driven Approach". Buildings 13, n.º 10 (28 de septiembre de 2023): 2471. http://dx.doi.org/10.3390/buildings13102471.
Texto completoNye, Logan, Hamid Ghaednia y Joseph H. Schwab. "Generating synthetic samples of chondrosarcoma histopathology with a denoising diffusion probabilistic model." Journal of Clinical Oncology 41, n.º 16_suppl (1 de junio de 2023): e13592-e13592. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e13592.
Texto completoBentivoglio, Roberto, Elvin Isufi, Sebastian Nicolaas Jonkman y Riccardo Taormina. "Deep learning methods for flood mapping: a review of existing applications and future research directions". Hydrology and Earth System Sciences 26, n.º 16 (25 de agosto de 2022): 4345–78. http://dx.doi.org/10.5194/hess-26-4345-2022.
Texto completoEdie, Stewart M., Peter D. Smits y David Jablonski. "Probabilistic models of species discovery and biodiversity comparisons". Proceedings of the National Academy of Sciences 114, n.º 14 (21 de marzo de 2017): 3666–71. http://dx.doi.org/10.1073/pnas.1616355114.
Texto completoAvaylon, Matthew, Robbie Sadre, Zhe Bai y Talita Perciano. "Adaptable Deep Learning and Probabilistic Graphical Model System for Semantic Segmentation". Advances in Artificial Intelligence and Machine Learning 02, n.º 01 (2022): 288–302. http://dx.doi.org/10.54364/aaiml.2022.1119.
Texto completoSansine, Vateanui, Pascal Ortega, Daniel Hissel y Franco Ferrucci. "Hybrid Deep Learning Model for Mean Hourly Irradiance Probabilistic Forecasting". Atmosphere 14, n.º 7 (24 de julio de 2023): 1192. http://dx.doi.org/10.3390/atmos14071192.
Texto completoHou, Yuxin, Ari Heljakka y Arno Solin. "Gaussian Process Priors for View-Aware Inference". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 9 (18 de mayo de 2021): 7762–70. http://dx.doi.org/10.1609/aaai.v35i9.16948.
Texto completoNguyen, Minh Truong, Viet-Hung Dang y Truong-Thang Nguyen. "Applying Bayesian neural network to evaluate the influence of specialized mini projects on final performance of engineering students: A case study". Ministry of Science and Technology, Vietnam 64, n.º 4 (15 de diciembre de 2022): 10–15. http://dx.doi.org/10.31276/vjste.64(4).10-15.
Texto completoNor, Ahmad Kamal Mohd. "Failure Prognostic of Turbofan Engines with Uncertainty Quantification and Explainable AI (XIA)". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, n.º 3 (11 de abril de 2021): 3494–504. http://dx.doi.org/10.17762/turcomat.v12i3.1624.
Texto completoGhobadi, Fatemeh y Doosun Kang. "Multi-Step Ahead Probabilistic Forecasting of Daily Streamflow Using Bayesian Deep Learning: A Multiple Case Study". Water 14, n.º 22 (14 de noviembre de 2022): 3672. http://dx.doi.org/10.3390/w14223672.
Texto completoBentsen, Lars Ødegaard, Narada Dilp Warakagoda, Roy Stenbro y Paal Engelstad. "Probabilistic Wind Park Power Prediction using Bayesian Deep Learning and Generative Adversarial Networks". Journal of Physics: Conference Series 2362, n.º 1 (1 de noviembre de 2022): 012005. http://dx.doi.org/10.1088/1742-6596/2362/1/012005.
Texto completoLee, Taehee, Devin Rand, Lorraine E. Lisiecki, Geoffrey Gebbie y Charles Lawrence. "Bayesian age models and stacks: combining age inferences from radiocarbon and benthic δ18O stratigraphic alignment". Climate of the Past 19, n.º 10 (17 de octubre de 2023): 1993–2012. http://dx.doi.org/10.5194/cp-19-1993-2023.
Texto completoLi, Longyuan, Jihai Zhang, Junchi Yan, Yaohui Jin, Yunhao Zhang, Yanjie Duan y Guangjian Tian. "Synergetic Learning of Heterogeneous Temporal Sequences for Multi-Horizon Probabilistic Forecasting". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 10 (18 de mayo de 2021): 8420–28. http://dx.doi.org/10.1609/aaai.v35i10.17023.
Texto completoPang, Bo, Erik Nijkamp y Ying Nian Wu. "Deep Learning With TensorFlow: A Review". Journal of Educational and Behavioral Statistics 45, n.º 2 (10 de septiembre de 2019): 227–48. http://dx.doi.org/10.3102/1076998619872761.
Texto completoLim, Heejong, Kwanghun Chung y Sangbok Lee. "Probabilistic Forecasting for Demand of a Bike-Sharing Service Using a Deep-Learning Approach". Sustainability 14, n.º 23 (29 de noviembre de 2022): 15889. http://dx.doi.org/10.3390/su142315889.
Texto completoBi, Wei, Wenhua Chen y Jun Pan. "Multidisciplinary Reliability Design Considering Hybrid Uncertainty Incorporating Deep Learning". Wireless Communications and Mobile Computing 2022 (18 de noviembre de 2022): 1–11. http://dx.doi.org/10.1155/2022/5846684.
Texto completoT, Ermolieva, Ermoliev Y, Zagorodniy) A, Bogdanov V, Borodina O, Havlik P, Komendantova N, Knopov P, Gorbachuk V y Zaslavskyi V. "Artificial Intelligence, Machine Learning, and Intelligent Decision Support Systems: Iterative “Learning” SQG-based procedures for Distributed Models’ Linkage". Artificial Intelligence 27, AI.2022.27(2) (29 de diciembre de 2022): 92–97. http://dx.doi.org/10.15407/jai2022.02.092.
Texto completoLiu, Xi, Tao Wu, Yuanyuan An y Yang Liu. "Probabilistic models of the strut efficiency factor for RC deep beams with MCMC method". Structural Concrete 21, n.º 3 (22 de enero de 2020): 917–33. http://dx.doi.org/10.1002/suco.201900249.
Texto completode Zarzà, I., J. de Curtò, Gemma Roig y Carlos T. Calafate. "LLM Multimodal Traffic Accident Forecasting". Sensors 23, n.º 22 (16 de noviembre de 2023): 9225. http://dx.doi.org/10.3390/s23229225.
Texto completoAli, Abdullah Marish, Fuad A. Ghaleb, Mohammed Sultan Mohammed, Fawaz Jaber Alsolami y Asif Irshad Khan. "Web-Informed-Augmented Fake News Detection Model Using Stacked Layers of Convolutional Neural Network and Deep Autoencoder". Mathematics 11, n.º 9 (23 de abril de 2023): 1992. http://dx.doi.org/10.3390/math11091992.
Texto completoChipofya, Mapopa, Hilal Tayara y Kil To Chong. "Deep Probabilistic Learning Model for Prediction of Ionic Liquids Toxicity". International Journal of Molecular Sciences 23, n.º 9 (9 de mayo de 2022): 5258. http://dx.doi.org/10.3390/ijms23095258.
Texto completoMeng, Fan, Kunlin Yang, Yichen Yao, Zhibin Wang y Tao Song. "Tropical Cyclone Intensity Probabilistic Forecasting System Based on Deep Learning". International Journal of Intelligent Systems 2023 (18 de marzo de 2023): 1–17. http://dx.doi.org/10.1155/2023/3569538.
Texto completoPomponi, Jary, Simone Scardapane y Aurelio Uncini. "A Probabilistic Re-Intepretation of Confidence Scores in Multi-Exit Models". Entropy 24, n.º 1 (21 de diciembre de 2021): 1. http://dx.doi.org/10.3390/e24010001.
Texto completoZhong, Z. y M. Mehltretter. "MIXED PROBABILITY MODELS FOR ALEATORIC UNCERTAINTY ESTIMATION IN THE CONTEXT OF DENSE STEREO MATCHING". ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences V-2-2021 (17 de junio de 2021): 17–26. http://dx.doi.org/10.5194/isprs-annals-v-2-2021-17-2021.
Texto completoShao, Mingyue, Wei Song y Xiaobing Zhao. "Polymetallic Nodule Resource Assessment of Seabed Photography Based on Denoising Diffusion Probabilistic Models". Journal of Marine Science and Engineering 11, n.º 8 (27 de julio de 2023): 1494. http://dx.doi.org/10.3390/jmse11081494.
Texto completoXu, Duo, Jonathan C. Tan, Chia-Jung Hsu y Ye Zhu. "Denoising Diffusion Probabilistic Models to Predict the Density of Molecular Clouds". Astrophysical Journal 950, n.º 2 (1 de junio de 2023): 146. http://dx.doi.org/10.3847/1538-4357/accae5.
Texto completoPandarinathan, Mr, S. Velan y S. Deepak. "Human Emotion Detection Using Deep Learning". International Journal for Research in Applied Science and Engineering Technology 11, n.º 5 (31 de mayo de 2023): 2225–29. http://dx.doi.org/10.22214/ijraset.2023.52016.
Texto completoCandela, Alberto, David R. Thompson, David Wettergreen, Kerry Cawse-Nicholson, Sven Geier, Michael L. Eastwood y Robert O. Green. "Probabilistic Super Resolution for Mineral Spectroscopy". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 08 (3 de abril de 2020): 13241–47. http://dx.doi.org/10.1609/aaai.v34i08.7030.
Texto completoM. Rajalakshmi y V. Sulochana. "Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured parzen estimators". Scientific Temper 14, n.º 04 (30 de diciembre de 2023): 1244–50. http://dx.doi.org/10.58414/scientifictemper.2023.14.4.27.
Texto completoTürkmen, Ali Caner, Tim Januschowski, Yuyang Wang y Ali Taylan Cemgil. "Forecasting intermittent and sparse time series: A unified probabilistic framework via deep renewal processes". PLOS ONE 16, n.º 11 (29 de noviembre de 2021): e0259764. http://dx.doi.org/10.1371/journal.pone.0259764.
Texto completoLi, Zhanli, Xinyu Zhang, Fan Deng y Yun Zhang. "Integrating deep neural network with logic rules for credit scoring". Intelligent Data Analysis 27, n.º 2 (15 de marzo de 2023): 483–500. http://dx.doi.org/10.3233/ida-216460.
Texto completo