Literatura académica sobre el tema "Printing Technology"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Printing Technology".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Printing Technology"
KONO, Toru. "Printing Technology". Journal of the Society of Mechanical Engineers 107, n.º 1031 (2004): 796–802. http://dx.doi.org/10.1299/jsmemag.107.1031_796.
Texto completoSoloviova, Olena. "3d printing technology". APPLIED GEOMETRY AND ENGINEERING GRAPHICS, n.º 97 (31 de enero de 2020): 136–48. http://dx.doi.org/10.32347/0131-579x.2020.97.136-148.
Texto completoKAKIZAKI, Kensuke. "Printing Technology for Newspaper." Journal of the Surface Finishing Society of Japan 42, n.º 6 (1991): 599–602. http://dx.doi.org/10.4139/sfj.42.599.
Texto completoOhkado, Toshio. "Principal of printing technology." JAPAN TAPPI JOURNAL 39, n.º 1 (1985): 92–99. http://dx.doi.org/10.2524/jtappij.39.92.
Texto completoDuda, Thomas y L. Venkat Raghavan. "3D Metal Printing Technology". IFAC-PapersOnLine 49, n.º 29 (2016): 103–10. http://dx.doi.org/10.1016/j.ifacol.2016.11.111.
Texto completoMunemura, Izumi. "Perfection in Technology : Printing". Journal of the Society of Mechanical Engineers 102, n.º 967 (1999): 358–59. http://dx.doi.org/10.1299/jsmemag.102.967_358.
Texto completoNerkar, Leena, Ankita Deore y Priyanka Mali Mayuri Bahikar. "Effective Printing Text using Bluetooth Technology from Android Application". International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (30 de junio de 2018): 608–10. http://dx.doi.org/10.31142/ijtsrd12915.
Texto completoJALIL, Muhammad Hilmi y Mitsugu TODO. "1F41 Development of Porous Structures Using 3D-Printing Technology". Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME 2015.27 (2015): 251–52. http://dx.doi.org/10.1299/jsmebio.2015.27.251.
Texto completoUsui, Minoru. "Ink Jet Printing Technology for High Printing Quality and High Printing Speed." JAPAN TAPPI JOURNAL 48, n.º 7 (1994): 891–98. http://dx.doi.org/10.2524/jtappij.48.891.
Texto completoLi, Hong Mei. "New Technology of Ecological Textile Printing". Applied Mechanics and Materials 401-403 (septiembre de 2013): 856–58. http://dx.doi.org/10.4028/www.scientific.net/amm.401-403.856.
Texto completoTesis sobre el tema "Printing Technology"
Zagorski, Karen L. "Publishing applications for color laser technology /". Online version of thesis, 1992. http://hdl.handle.net/1850/10914.
Texto completoCui, Xiaofeng. "Human microvasculature fabrication using thermal inkjet printing technology". Connect to this title online, 2008. http://etd.lib.clemson.edu/documents/1239894674/.
Texto completoKim, Kyungsik M. Arch Massachusetts Institute of Technology. "Printing the vernacular : 3D printing technology and its impact on the City of Sana'a, Yemen". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103469.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (page 121).
This thesis project is a speculative proposal; it assumes that 3D printing technology is a major manufacturing and construction method in the future. The industrial revolution that has begun in the 19th century was the transition to a new manufacturing process. This transition included going from hand production to machine production and eventually changed the entire way of making things, buying things, moving things, and etc. The changes of our life led to the transformation of our cities. Current cities were formed based on the Industrial Supply Chain that enables flow of materials and products from supplier to customer. This supply chain decided locations of factories, retails, roads, ports, warehouses, and etc that have structured cities. In recent years, 3D printing has attracted increasing attention. The prospect of printing machines has inspired enthusiasts to proclaim that 3D printing will bring "the next industrial revolution", while others have reacted with skepticism and point to the technology's current limitations. However, 3D printing could proliferate rapidly over the coming decade. Improvements in speed and performance could enable unprecedented levels of mass customization, simplified supply chains, and even the "democratization" of manufacturing as consumers begin to print their own products. Although there has been a number of studies on the 3D Printing technology itself and its impact on economy, less attentions have been paid to its spatial impact or impact on our cities. As the industrial revolution transformed cities, 3D Printing is expected to change our current cities in many ways, as it will change the way of making, moving, buying things again. The fact that 3D Printing can be done near the point of consumption, implies several possible scenarios of future cities This thesis illustrates different degrees of influence of the technology in the city of Sana'a, Yemen. The city has four distinct areas currently: the historical world heritage site, a partially protected area, a modernized area, and an informal settlement. The four distinct areas will be changed in different ways by different uses of 3D printing technology. The tower house, which is one of the most significant building typologies of the city, is used to examine and compare the influences of the technology. More specifically, the ornament of the tower house and possible scenarios of transformation are the main design focus of the project. Ornament will appear in different scales and configurations in the future city of Sana'a, from high resolution ornament to inhabitable ornament.
by Kyungsik Kim.
M. Arch.
Thorell, Alexander y Jonas Cederberg. "Designing a Hyperbolic Lens Antenna using 3D Printing Technology". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-293894.
Texto completoFör att öka kapaciteten, sänka för- dröjningen samt höja datahastigheterna så behövs högre förstärkta antenner som kan transmittera millimetervågor. Här är dielektriska linsantenner en attraktiv, potentiell lösning. J1-projektet undersökte permittiviteten och förlusterna av fyra 3D-utskriftsfilament i fyra frekvensband, för att bättre designa en hyperbolisk linsantenn i Ka- bandet för en matande WR-28 “Standard Gain Horn Antenna”. För att kunna mäta de dielektriska filamenten så var TRL-kalibreringsmetoden utvärderad i simulering och nyttjad vid mätning tillsammans med NRW-metoden för att betsämma permittiviteten. Nackdelarna bakom dessa metoder nära resonanta frekvenser var marginellt analyserade i simulering och resultaten av de behandlade, mätta permittiviteterna visade sig ha märkbara osäker- heter i deras förlusttangens. Oavsett så blev medelvärdet på det uppmätta resultatet; av det databladsspecificerade materialet R (∈r) = 3; ∈*r = 3,53 -0,13j i Ka-bandet. Med hjälp av databladsspecifikationerna, så designades samt optimiserades en hyperbolisk linsantenn i simulering för Ka-bandets mittfrekvens på 33,25 GHz. De simulerade resultaten visar på en apertureffektivitet på 36,2% och en förstärkning på 30,4 dBi.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Robillard, Jean-Claude y Michel Brimbal. "DEVELOPMENTS IN DIRECT THERMAL ARRAY CHART RECORDERS PRINTING TECHNOLOGY". International Foundation for Telemetering, 1990. http://hdl.handle.net/10150/613490.
Texto completoIn the past 2 to 3 years, linear array recorders based on direct thermal printing technology have proven to be the recorders of choice for a large number of telemetry display stations. This technology initially developed for facsimile communications has evolved to meet speed and reliability required by the operation of recorders in the telemetry station environment. This paper discusses the performance of various direct thermal printing techniques employed. The focus is given to parameters that are critical to telemetry station operation such as quality of the chart output, maintenance and support, reliability and cost. The reliability issue is discussed at length as it is impacted by printhead thermal stress and mechanical wear. Other printing technologies available for chart recording are briefly reviewed as they may appear to be suitable alternatives in some telemetry applications.
Lindén, Marcus. "Merging Electrohydrodynamic Printing and Electrochemistry : Sub-micronscale 3D-printing of Metals". Thesis, Uppsala universitet, Tillämpad materialvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-330958.
Texto completoEmord, Nicholas. "High Speed, Micron Precision Scanning Technology for 3D Printing Applications". UNF Digital Commons, 2018. https://digitalcommons.unf.edu/etd/821.
Texto completoAlvarez, Casanova Claudia Cristina. "A study of production workflows, technology and hybrid printing models in small newspaper companies /". Online version of thesis, 2008. http://hdl.handle.net/1850/6246.
Texto completoPalacios, Sebastian R. "A smart wireless integrated module (SWIM) on organic substrates using inkjet printing technology". Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51906.
Texto completoTraille, Anya Nadira-Asanti. "Flexible monolithic ultra-portable ground penetrating radar using inkjet printing technology". Thesis, Toulouse, INPT, 2014. http://www.theses.fr/2014INPT0095/document.
Texto completoFlexible monolithic ultra-portable ground penetrating radar using inkjet printing technology A Ground Penetrating Radar (GPR) performs nondestructive detection of buried objects, or subsurface imaging by transmitting electromagnetic waves and detecting and analyzing the reflections. The main challenge of GPR is the reduction in detection range due to the severe signal attenuation that is caused by subsurface conductivity that becomes more severe at high frequencies. In order to increase the detection range, GPR uses lower frequencies than non-GPR radars and thus requires larger antennas that may limit system portability. Most GPR systems use impulse radars however the FMCW (frequency modulated continuous wave) radar can provide some advantages such as frequency versatility, reduced system maintenance and improved range resolution. Frequencies below 1 GHz were initially uncommon in short-range FMCW radars but are now finding their way back in systems such as ultra-wideband (UWB) ground penetrating radars for mine detection and as well as other applications. When measurements are performed on vehicles, large antenna fixtures are not a problem. Portability, however, can become an issue in geophysical studies or emergency work in which one may need to transport the system through rugged, unexplored and/or hazardous locations without vehicle access and perform measurements. Inaccessible environments may require climbing up and down, squeezing through, jumping over, crawling under, maneuvering through or swimming through obstacles (mountains, caves, lakes, rocky areas). In addition to transportation, rapid system setup is critical in difficult conditions such as freezing temperatures or extreme heat where exposure time is costly and limits measurement time. One solution to enhance the portability and deployability of a GPR system for wide area rugged measurements is to realize a complete system on a continuous substrate that is rollable around a reasonably small radius and storable in a scroll or poster-like fashion for easy backpack transportation. Electronics that can flex and bend have already used in military applications and for outdoor sporting gear. Currently, there are a few types of technology available to realize flexible electronics that have been a major topic of research, each with different levels of integration. Inkjet printing technology offers a cost effective, versatile and efficient method for realizing flexible devices. In this work a classical FMCW radar system is designed and an effort is made, for the first time, to apply inkjet printing technology to a radar system. The system is referred to as a portable monolithic radar system in which all actives, passives and antenna are meant to share the same continuous rollable substrate. In doing this, a medium level of integration is used to investigate limits of system complexity, resolution and ultra miniaturization for tight rollability. Various design challenges of a large system are overcome that will hopefully give insight to new designs as the integration level using inkjet printing technology increases
Libros sobre el tema "Printing Technology"
Adams, J. Michael. Printing technology. 4a ed. Albany, N.Y: Delmar Publishers, 1996.
Buscar texto completoAdams, J. Michael. Printing technology. 3a ed. Albany, N.Y: Delmar Publishers, 1988.
Buscar texto completoWilliams, Chris H. Printing ink technology. Leatherhead: Pira International, 2001.
Buscar texto completoSpeirs, Hugh M. Introduction to printing technology. 4a ed. London: British Printing Industries Federation, 1992.
Buscar texto completoKarsnitz, John R. Graphic communication technology. 2a ed. Albany, N.Y: Delmar Publishers, 1993.
Buscar texto completoPrinting materials: Science and technology. Leatherhead: Pira International, 1998.
Buscar texto completoPrinting technology, letters, & Samuel Johnson. Princeton, N.J: Princeton University Press, 1987.
Buscar texto completoKuznetsov, Yuri V. Principles of Image Printing Technology. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60955-9.
Texto completoInswae Munhwa Chʻulpʻansa (Korea). Pʻyŏnjippu. Inswae taesajŏn: Dictionary of printing technology. Sŏul: Inswae Munhwa Chʻulpʻansa, 1992.
Buscar texto completoCapítulos de libros sobre el tema "Printing Technology"
Suganuma, Katsuaki. "Printing Technology". En SpringerBriefs in Electrical and Computer Engineering, 23–48. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9625-0_2.
Texto completoStreet, R. A., T. N. Ng, S. E. Ready y G. L. Whiting. "Printing". En Handbook of Visual Display Technology, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-35947-7_183-1.
Texto completoStreet, R. A., T. N. Ng, S. E. Ready y G. L. Whiting. "Printing". En Handbook of Visual Display Technology, 1289–303. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14346-0_183.
Texto completoLoubere, Philip A. "Printing". En A History of Communication Technology, 65–97. New York, NY : Routledge, 2021.: Routledge, 2021. http://dx.doi.org/10.4324/9780429265723-6.
Texto completoGebhardt, Andreas, Julia Kessler y Laura Thurn. "Basics of 3D Printing Technology". En 3D Printing, 1–32. München: Carl Hanser Verlag GmbH & Co. KG, 2018. http://dx.doi.org/10.3139/9781569907030.001.
Texto completoSafonov, Ilia V., Ilya V. Kurilin, Michael N. Rychagov y Ekaterina V. Tolstaya. "Integral Printing". En Signals and Communication Technology, 293–305. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05342-0_15.
Texto completoKuznetsov, Yuri V. "Multicolor Printing". En Principles of Image Printing Technology, 233–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60955-9_10.
Texto completoLoubere, Philip A. "Industrial printing". En A History of Communication Technology, 117–51. New York, NY : Routledge, 2021.: Routledge, 2021. http://dx.doi.org/10.4324/9780429265723-8.
Texto completoDahman, Yaser. "Biomaterials in 3D Printing/Bio-printing Techniques". En Biomaterials Science and Technology, 311–28. Boca Raton : Taylor & Francis, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429465345-13.
Texto completoBigdelou, Parnian, Alexander Roth, Akshata Datar y Moo-Yeal Lee. "Biological Sample Printing". En Microarray Bioprinting Technology, 71–104. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46805-1_4.
Texto completoActas de conferencias sobre el tema "Printing Technology"
"Printing Technology Essentials of Several Special Printing Inks". En 2017 4th International Materials, Machinery and Civil Engineering Conference. Francis Academic Press, 2017. http://dx.doi.org/10.25236/matmce.2017.28.
Texto completoStarkweather, Gary K. "Technology trends in electrophotographic printers". En Printing Technologies for Images, Gray Scale, and Color, editado por Derek B. Dove, Takao Abe y Joachim L. Heinzl. SPIE, 1991. http://dx.doi.org/10.1117/12.46344.
Texto completoFurukawa, Tadahiro. "Printing technology for electronics". En 2016 International Conference on Electronics Packaging (ICEP). IEEE, 2016. http://dx.doi.org/10.1109/icep.2016.7486793.
Texto completoWebb, Joseph W. "Commercial printing and electronic color printing". En IS&T/SPIE's Symposium on Electronic Imaging: Science & Technology, editado por Jan Bares. SPIE, 1995. http://dx.doi.org/10.1117/12.207590.
Texto completoAbe, Takao. "Trends in color hard-copy technology in Japan". En Printing Technologies for Images, Gray Scale, and Color, editado por Derek B. Dove, Takao Abe y Joachim L. Heinzl. SPIE, 1991. http://dx.doi.org/10.1117/12.46329.
Texto completoDrees, Friedrich-Wilhelm y Wolfgang Pekruhn. "Laptop page printer realized by thermal transfer technology". En Printing Technologies for Images, Gray Scale, and Color, editado por Derek B. Dove, Takao Abe y Joachim L. Heinzl. SPIE, 1991. http://dx.doi.org/10.1117/12.46337.
Texto completoSahana, V. W. y G. T. Thampi. "3D printing technology in industry". En 2018 2nd International Conference on Inventive Systems and Control (ICISC). IEEE, 2018. http://dx.doi.org/10.1109/icisc.2018.8399128.
Texto completo"Printing technology of biomedical devices". En 2016 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2016. http://dx.doi.org/10.1109/icit.2016.7474947.
Texto completoMing, Joy, Ishita Ghosh, Jay Chen y Azza Abouzied. "Printing Paper Technology for Development". En the Fifth ACM Symposium. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2674377.2678268.
Texto completoSaito, Takashi. "Nonimpact printing technology in Japan". En Electronic Imaging '90, Santa Clara, 11-16 Feb'97, editado por Victor A. Files y David Kessler. SPIE, 1990. http://dx.doi.org/10.1117/12.19863.
Texto completoInformes sobre el tema "Printing Technology"
Cordero, Zachary y Amy M. Elliott. Collaboration for the Advancement of Indirect 3D Printing Technology. Office of Scientific and Technical Information (OSTI), junio de 2016. http://dx.doi.org/10.2172/1302926.
Texto completoHahn, Kim. Engaging fashion design students with evolving technology; digital printing. Ames: Iowa State University, Digital Repository, 2013. http://dx.doi.org/10.31274/itaa_proceedings-180814-458.
Texto completoZhang, Ling. Action Research in Apparel Design Using Digital Textile Printing Technology. Ames (Iowa): Iowa State University. Library, enero de 2019. http://dx.doi.org/10.31274/itaa.8378.
Texto completoJoshi, Pooran. Multi-layer Printing of Complex Antennas Using Aerosol Jet Technology. Office of Scientific and Technical Information (OSTI), noviembre de 2019. http://dx.doi.org/10.2172/1606863.
Texto completoRolling, Virginia y Lushan Sun. The Perceptions of Wearable Accessory Designers in Applying 3D Printing Technology. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-1901.
Texto completoAllen, Jeffrey W. y Bae-Ian Wu. Design and Fabrication of a Radio Frequency GRIN Lens Using 3D Printing Technology. Fort Belvoir, VA: Defense Technical Information Center, abril de 2013. http://dx.doi.org/10.21236/ada582804.
Texto completoDeSalle, Christopher S. y David A. Schilling. Feasibility Study of the Department of the Air Force Information Technology Commodities Council (ITCC) Digital Printing and Imagery (DPI) Initiative. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2006. http://dx.doi.org/10.21236/ada460428.
Texto completoDiggs-McGee, Brandy, Eric Kreiger, Megan Kreiger y Michael Case. Print time vs. elapsed time : a temporal analysis of a continuous printing operation. Engineer Research and Development Center (U.S.), agosto de 2021. http://dx.doi.org/10.21079/11681/41422.
Texto completoFord, David N., Tom Housel, Sandra Hom y Johnathan Mun. Make or Buy: An Analysis of the Impacts of 3D Printing Operations, 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship Maintenance and Modernization Cost Savings. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2015. http://dx.doi.org/10.21236/ad1016676.
Texto completoSlattery, Kevin. Unsettled Topics on the Benefit of Additive Manufacturing for Production at the Point of Use in the Mobility Industry. SAE International, febrero de 2021. http://dx.doi.org/10.4271/epr2021006.
Texto completo