Literatura académica sobre el tema "Printing Technology"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Printing Technology".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Printing Technology"

1

KONO, Toru. "Printing Technology". Journal of the Society of Mechanical Engineers 107, n.º 1031 (2004): 796–802. http://dx.doi.org/10.1299/jsmemag.107.1031_796.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Soloviova, Olena. "3d printing technology". APPLIED GEOMETRY AND ENGINEERING GRAPHICS, n.º 97 (31 de enero de 2020): 136–48. http://dx.doi.org/10.32347/0131-579x.2020.97.136-148.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

KAKIZAKI, Kensuke. "Printing Technology for Newspaper." Journal of the Surface Finishing Society of Japan 42, n.º 6 (1991): 599–602. http://dx.doi.org/10.4139/sfj.42.599.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Ohkado, Toshio. "Principal of printing technology." JAPAN TAPPI JOURNAL 39, n.º 1 (1985): 92–99. http://dx.doi.org/10.2524/jtappij.39.92.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Duda, Thomas y L. Venkat Raghavan. "3D Metal Printing Technology". IFAC-PapersOnLine 49, n.º 29 (2016): 103–10. http://dx.doi.org/10.1016/j.ifacol.2016.11.111.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Munemura, Izumi. "Perfection in Technology : Printing". Journal of the Society of Mechanical Engineers 102, n.º 967 (1999): 358–59. http://dx.doi.org/10.1299/jsmemag.102.967_358.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Nerkar, Leena, Ankita Deore y Priyanka Mali Mayuri Bahikar. "Effective Printing Text using Bluetooth Technology from Android Application". International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (30 de junio de 2018): 608–10. http://dx.doi.org/10.31142/ijtsrd12915.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

JALIL, Muhammad Hilmi y Mitsugu TODO. "1F41 Development of Porous Structures Using 3D-Printing Technology". Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME 2015.27 (2015): 251–52. http://dx.doi.org/10.1299/jsmebio.2015.27.251.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Usui, Minoru. "Ink Jet Printing Technology for High Printing Quality and High Printing Speed." JAPAN TAPPI JOURNAL 48, n.º 7 (1994): 891–98. http://dx.doi.org/10.2524/jtappij.48.891.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Li, Hong Mei. "New Technology of Ecological Textile Printing". Applied Mechanics and Materials 401-403 (septiembre de 2013): 856–58. http://dx.doi.org/10.4028/www.scientific.net/amm.401-403.856.

Texto completo
Resumen
As textile printing technology continues to improve, fabric printing changes from in a technical workshop into a science hall. Hitherto unknown achievement is being made. Printing technology is going towards environmental protection, saving energy and reducing consumption. Ecological printing is not only the status what textile development needs, but also the development trend of textiles in future. This paper focuses on the ecological printing and special printing technology.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Printing Technology"

1

Zagorski, Karen L. "Publishing applications for color laser technology /". Online version of thesis, 1992. http://hdl.handle.net/1850/10914.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Cui, Xiaofeng. "Human microvasculature fabrication using thermal inkjet printing technology". Connect to this title online, 2008. http://etd.lib.clemson.edu/documents/1239894674/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Kim, Kyungsik M. Arch Massachusetts Institute of Technology. "Printing the vernacular : 3D printing technology and its impact on the City of Sana'a, Yemen". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103469.

Texto completo
Resumen
Thesis: M. Arch., Massachusetts Institute of Technology, Department of Architecture, 2016.
Cataloged from PDF version of thesis.
Includes bibliographical references (page 121).
This thesis project is a speculative proposal; it assumes that 3D printing technology is a major manufacturing and construction method in the future. The industrial revolution that has begun in the 19th century was the transition to a new manufacturing process. This transition included going from hand production to machine production and eventually changed the entire way of making things, buying things, moving things, and etc. The changes of our life led to the transformation of our cities. Current cities were formed based on the Industrial Supply Chain that enables flow of materials and products from supplier to customer. This supply chain decided locations of factories, retails, roads, ports, warehouses, and etc that have structured cities. In recent years, 3D printing has attracted increasing attention. The prospect of printing machines has inspired enthusiasts to proclaim that 3D printing will bring "the next industrial revolution", while others have reacted with skepticism and point to the technology's current limitations. However, 3D printing could proliferate rapidly over the coming decade. Improvements in speed and performance could enable unprecedented levels of mass customization, simplified supply chains, and even the "democratization" of manufacturing as consumers begin to print their own products. Although there has been a number of studies on the 3D Printing technology itself and its impact on economy, less attentions have been paid to its spatial impact or impact on our cities. As the industrial revolution transformed cities, 3D Printing is expected to change our current cities in many ways, as it will change the way of making, moving, buying things again. The fact that 3D Printing can be done near the point of consumption, implies several possible scenarios of future cities This thesis illustrates different degrees of influence of the technology in the city of Sana'a, Yemen. The city has four distinct areas currently: the historical world heritage site, a partially protected area, a modernized area, and an informal settlement. The four distinct areas will be changed in different ways by different uses of 3D printing technology. The tower house, which is one of the most significant building typologies of the city, is used to examine and compare the influences of the technology. More specifically, the ornament of the tower house and possible scenarios of transformation are the main design focus of the project. Ornament will appear in different scales and configurations in the future city of Sana'a, from high resolution ornament to inhabitable ornament.
by Kyungsik Kim.
M. Arch.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Thorell, Alexander y Jonas Cederberg. "Designing a Hyperbolic Lens Antenna using 3D Printing Technology". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-293894.

Texto completo
Resumen
To increase capacity, lower latency, and boostdata rates, new higher gain antennas that can transmitmillimeter-waves are needed. Dielectric lens antennas arean attractive potential solution. The J1-project investigatedthe permittivity and losses of four 3D printing filamentsin four frequency bands, to better design a hyperboliclens antenna in the Ka-band with a WR-28 StandardGain Horn Antenna acting as a feed. To measure thedielectric filaments, the TRL calibration method wasevaluated in simulation and employed in measurementstogether with the NRW method for permittivity extraction.Shortcomings of these methods near resonant frequencieswere marginally analyzed in simulation, and the results ofthe processed measured permittivities were shown to havesignificant uncertainty in the loss tangent. Nevertheless thedatasheet specified<(r) =3 was shown to have meanrelative permittivity∗r= 3.53−0.13jin the Ka-band.Using the measurement data, a hyperbolic lens antennawas designed and optimized in simulation for the centerfrequency of the Ka-band at 33.25 GHz. The simulatedresults show an aperture efficiency of 36.2% and a gainof 30.4 dBi.
För att öka kapaciteten, sänka för- dröjningen samt höja datahastigheterna så behövs högre förstärkta antenner som kan transmittera millimetervågor. Här är dielektriska linsantenner en attraktiv, potentiell lösning. J1-projektet undersökte permittiviteten och förlusterna av fyra 3D-utskriftsfilament i fyra frekvensband, för att bättre designa en hyperbolisk linsantenn i Ka- bandet för en matande WR-28 “Standard Gain Horn Antenna”. För att kunna mäta de dielektriska filamenten så var TRL-kalibreringsmetoden utvärderad i simulering och nyttjad vid mätning tillsammans med NRW-metoden för att betsämma permittiviteten. Nackdelarna bakom dessa metoder nära resonanta frekvenser var marginellt analyserade i simulering och resultaten av de behandlade, mätta permittiviteterna visade sig ha märkbara osäker- heter i deras förlusttangens. Oavsett så blev medelvärdet på det uppmätta resultatet; av det databladsspecificerade materialet R (∈r) = 3; ∈*r = 3,53 -0,13j i Ka-bandet. Med hjälp av databladsspecifikationerna, så designades samt optimiserades en hyperbolisk linsantenn i simulering för Ka-bandets mittfrekvens på 33,25 GHz. De simulerade resultaten visar på en apertureffektivitet på 36,2% och en förstärkning på 30,4 dBi.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Robillard, Jean-Claude y Michel Brimbal. "DEVELOPMENTS IN DIRECT THERMAL ARRAY CHART RECORDERS PRINTING TECHNOLOGY". International Foundation for Telemetering, 1990. http://hdl.handle.net/10150/613490.

Texto completo
Resumen
International Telemetering Conference Proceedings / October 29-November 02, 1990 / Riviera Hotel and Convention Center, Las Vegas, Nevada
In the past 2 to 3 years, linear array recorders based on direct thermal printing technology have proven to be the recorders of choice for a large number of telemetry display stations. This technology initially developed for facsimile communications has evolved to meet speed and reliability required by the operation of recorders in the telemetry station environment. This paper discusses the performance of various direct thermal printing techniques employed. The focus is given to parameters that are critical to telemetry station operation such as quality of the chart output, maintenance and support, reliability and cost. The reliability issue is discussed at length as it is impacted by printhead thermal stress and mechanical wear. Other printing technologies available for chart recording are briefly reviewed as they may appear to be suitable alternatives in some telemetry applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Lindén, Marcus. "Merging Electrohydrodynamic Printing and Electrochemistry : Sub-micronscale 3D-printing of Metals". Thesis, Uppsala universitet, Tillämpad materialvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-330958.

Texto completo
Resumen
Additive manufacturing (AM) is currently on the verge of redefining the way we produce and manufacture things. AM encompasses many technologies and subsets, which are all joint by a common denominator; they build three dimensional (3D) objects by adding materials layer-upon-layer. This family of methods can do so, whether the material is plastic, concrete, metallic or living cells which can function as organs. AM manufacturing at the micro scale introduces new capabilities for the AM family that has been proven difficult to achieve with established AM methods at the macro scale. Electrohydrodynamic jet (E-jet or EHD jet) printing is a micro AM technique which has the ability to print at high resolution and speed by exploiting physical phenomena to generate droplets using the means of an electric field. However, when printing metallic materials, this method requires nanoparticles for deposition. To obtain a stable structure the material needs to be sintered, after which the deposited material is left with a porous structure. In contrary, electrochemical methods using the well-known deposition mechanism of electroplating, can deposit dense and pure structures with the downside of slow deposition. In this thesis, a new method is proposed to micro additive manufacturing by merging an already existing technology EHD with simple electrochemistry. By doing so, we demonstrate that it is possible to print metallic structures at the micro- and nanoscale with high speeds, without the need for presynthesized nanoparticles. To achieve this, a printing setup was designed and built. Using a sacrificial wire and the solvent acetonitrile, metallic building blocks such as lines, pillars and other geometric features could be printed in copper, silver, and gold with a minimum feature size of 200 nm. A voltage dependence was found for porosity, where the densest pillars were printed at 135-150 V and the most porous at 260 V. The maximum experimental deposition speed measured up to 4.1 µm · s−1 at 220 V. Faraday’s law of electrolysis could be used to predict the experimental deposition speed at a potential of 190 V with vexp = 1.8 µm · s−1 and vtheory = 0.8 µm · s−1. The microstructure of the pillars could be improved through lowering the applied voltage. In addition, given that Faraday’s law of electrolysis could predict experimental depositions speeds well, it gives further proof to reduction being the mechanism of deposition.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Emord, Nicholas. "High Speed, Micron Precision Scanning Technology for 3D Printing Applications". UNF Digital Commons, 2018. https://digitalcommons.unf.edu/etd/821.

Texto completo
Resumen
Modern 3D printing technology is becoming a more viable option for use in industrial manufacturing. As the speed and precision of rapid prototyping technology improves, so too must the 3D scanning and verification technology. Current 3D scanning technology (such as CT Scanners) produce the resolution needed for micron precision inspection. However, the method lacks in speed. Some scans can be multiple gigabytes in size taking several minutes to acquire and process. Especially in high volume manufacturing of 3D printed parts, such delays prohibit the widespread adaptation of 3D scanning technology for quality control. The limiting factors of current technology boil down to computational and processing power along with available sensor resolution and operational frequency. Realizing a 3D scanning system that produces micron precision results within a single minute promises to revolutionize the quality control industry. The specific 3D scanning method considered in this thesis utilizes a line profile triangulation sensor with high operational frequency, and a high-precision mechanical actuation apparatus for controlling the scan. By syncing the operational frequency of the sensor to the actuation velocity of the apparatus, a 3D point cloud is rapidly acquired. Processing of the data is then performed using MATLAB on contemporary computing hardware, which includes proper point cloud formatting and implementation of the Iterative Closest Point (ICP) algorithm for point cloud stitching. Theoretical and physical experiments are performed to demonstrate the validity of the method. The prototyped system is shown to produce multiple loosely-registered micron precision point clouds of a 3D printed object that are then stitched together to form a full point cloud representative of the original part. This prototype produces micron precision results in approximately 130 seconds, but the experiments illuminate upon the additional investments by which this time could be further reduced to approach the revolutionizing one-minute milestone.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Alvarez, Casanova Claudia Cristina. "A study of production workflows, technology and hybrid printing models in small newspaper companies /". Online version of thesis, 2008. http://hdl.handle.net/1850/6246.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Palacios, Sebastian R. "A smart wireless integrated module (SWIM) on organic substrates using inkjet printing technology". Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51906.

Texto completo
Resumen
This thesis investigates inkjet printing of fully-integrated modules fabricated on organic substrates as a system-level solution for ultra-low-cost and eco-friendly mass production of wireless sensor modules. Prototypes are designed and implemented in both traditional FR-4 substrate and organic substrate. The prototype on organic substrate is referred to as a Smart Wireless Integrated Module (SWIM). Parallels are drawn between FR-4 manufacturing and inkjet printing technology, and recommendations are discussed to enable the potential of inkjet printing technology. Finally, this thesis presents novel applications of SWIM technology in the area of wearable and implantable electronics. Chapter 1 serves as an introduction to inkjet printing technology on organic substrates, wireless sensor networks (WSNs), and the requirements for low-power consumption, low-cost, and eco-friendly technology. Chapter 2 discusses the design of SWIM and its implementation using traditional manufacturing techniques on FR-4 substrate. Chapter 3 presents a benchmark prototype of SWIM on paper substrate. Challenges in the manufacturing process are addressed, and solutions are proposed which suggest future areas of research in inkjet printing technology. Chapter 4 presents novel applications of SWIM technology in the areas of implantable and wearable electronics. Chapter 5 concludes the thesis by discussing the importance of this work in creating a bridge between current inkjet printing technology and its future.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Traille, Anya Nadira-Asanti. "Flexible monolithic ultra-portable ground penetrating radar using inkjet printing technology". Thesis, Toulouse, INPT, 2014. http://www.theses.fr/2014INPT0095/document.

Texto completo
Resumen
Un géoradar (GPR) effectue une détection non destructive d'objets enfouis, ou l'imagerie du sous-sol par transmission d'ondes électromagnétiques et la détection et l'analyse des réflexions. Le principal défi de GPR est la réduction de la portée de détection en raison de l'atténuation du signal grave causée par la conductivité du sous-sol qui devient plus sévère dans les hautes fréquences. Afin d'augmenter la portée de détection, GPR utilise des fréquences plus basses que les radars non-GPR et nécessite donc de plus grandes antennes qui peuvent limiter la portabilité du système. La plupart des systèmes utilisent des radars GPR à impulsion mais le FMCW (onde continue à fréquence modulée) radar peut présenter certains avantages tels que la versatilité de la fréquence, une maintenance réduite du système et une meilleure résolution de gamme. Les fréquences inférieures à 1 GHz ont d'abord été rares en radars de courte portée FMCW mais trouvent maintenant leur chemin de retour dans des systèmes comme ultra-large bande (UWB) pénétrant dans le sol des radars pour la détection des mines et ainsi que d'autres applications. Lorsque les mesures sont effectuées sur des véhicules, de grands appareils d'antenne ne sont pas un problème. La portabilité, cependant, peut devenir un problème dans les études géophysiques ou des travaux d'urgence dans laquelle on peut avoir besoin de transporter le système par des endroits accidentés, inexplorés et / ou dangereux sans accès aux véhicules. Des environnements inaccessibles peuvent nécessiter la manœuvrabilité à travers d’obstacles (montagnes, grottes, lacs, zones rocheuses). D’ailleurs, l’installation rapide du système est critique dans des conditions difficiles telles que les températures extrêmes, où le temps d'exposition est coûteux et le temps de mesure limité. Une solution pour améliorer la portabilité et la capacité de déploiement d'un système GPR est de réaliser un système complet sur un substrat qui est enroulable afin de permettre une transportation facile. L’électronique sur substrat flexible a déjà été utilisée dans des applications militaires et des sports en plein air. Actuellement, il y a quelques technologies disponibles pour réaliser l'électronique flexible qui ont été un thème majeur en recherche, chacune avec différents niveaux d'intégration. La technologie d'impression à jet d'encre offre une méthode efficace, polyvalente et rentable pour la réalisation de dispositifs flexibles. Dans ce travail, un système radar FMCW classique a été conçu et un travail présenté, pour la première fois, d’application de la technologie d'impression à jet d'encre sur un système de radar. Le système est appelé un système de radar monolithique portable dans lequel tous les agents actifs, passifs et l'antenne sont destinés à partager le même substrat enroulable continu. Ainsi, une intégration hybride est utilisée pour étudier la fiabilité et la performance du système complet enroulé autour d’un rayon serré. Plusieurs défis de conception d'un grand système ont été surmontés qui donneront un aperçu de nouveaux modèles au fur et à mesure que le niveau d'intégration à l'aide de la technologie d'impression à jet d'encre continue d’augmenter
Flexible monolithic ultra-portable ground penetrating radar using inkjet printing technology A Ground Penetrating Radar (GPR) performs nondestructive detection of buried objects, or subsurface imaging by transmitting electromagnetic waves and detecting and analyzing the reflections. The main challenge of GPR is the reduction in detection range due to the severe signal attenuation that is caused by subsurface conductivity that becomes more severe at high frequencies. In order to increase the detection range, GPR uses lower frequencies than non-GPR radars and thus requires larger antennas that may limit system portability. Most GPR systems use impulse radars however the FMCW (frequency modulated continuous wave) radar can provide some advantages such as frequency versatility, reduced system maintenance and improved range resolution. Frequencies below 1 GHz were initially uncommon in short-range FMCW radars but are now finding their way back in systems such as ultra-wideband (UWB) ground penetrating radars for mine detection and as well as other applications. When measurements are performed on vehicles, large antenna fixtures are not a problem. Portability, however, can become an issue in geophysical studies or emergency work in which one may need to transport the system through rugged, unexplored and/or hazardous locations without vehicle access and perform measurements. Inaccessible environments may require climbing up and down, squeezing through, jumping over, crawling under, maneuvering through or swimming through obstacles (mountains, caves, lakes, rocky areas). In addition to transportation, rapid system setup is critical in difficult conditions such as freezing temperatures or extreme heat where exposure time is costly and limits measurement time. One solution to enhance the portability and deployability of a GPR system for wide area rugged measurements is to realize a complete system on a continuous substrate that is rollable around a reasonably small radius and storable in a scroll or poster-like fashion for easy backpack transportation. Electronics that can flex and bend have already used in military applications and for outdoor sporting gear. Currently, there are a few types of technology available to realize flexible electronics that have been a major topic of research, each with different levels of integration. Inkjet printing technology offers a cost effective, versatile and efficient method for realizing flexible devices. In this work a classical FMCW radar system is designed and an effort is made, for the first time, to apply inkjet printing technology to a radar system. The system is referred to as a portable monolithic radar system in which all actives, passives and antenna are meant to share the same continuous rollable substrate. In doing this, a medium level of integration is used to investigate limits of system complexity, resolution and ultra miniaturization for tight rollability. Various design challenges of a large system are overcome that will hopefully give insight to new designs as the integration level using inkjet printing technology increases
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Libros sobre el tema "Printing Technology"

1

Ann, Dolin Penny, ed. Printing technology. 5a ed. Albany, NY: Delmar, 2002.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Adams, J. Michael. Printing technology. 4a ed. Albany, N.Y: Delmar Publishers, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Adams, J. Michael. Printing technology. 3a ed. Albany, N.Y: Delmar Publishers, 1988.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Williams, Chris H. Printing ink technology. Leatherhead: Pira International, 2001.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Speirs, Hugh M. Introduction to printing technology. 4a ed. London: British Printing Industries Federation, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Karsnitz, John R. Graphic communication technology. 2a ed. Albany, N.Y: Delmar Publishers, 1993.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Printing materials: Science and technology. Leatherhead: Pira International, 1998.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Printing technology, letters, & Samuel Johnson. Princeton, N.J: Princeton University Press, 1987.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Kuznetsov, Yuri V. Principles of Image Printing Technology. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60955-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Inswae Munhwa Chʻulpʻansa (Korea). Pʻyŏnjippu. Inswae taesajŏn: Dictionary of printing technology. Sŏul: Inswae Munhwa Chʻulpʻansa, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Capítulos de libros sobre el tema "Printing Technology"

1

Suganuma, Katsuaki. "Printing Technology". En SpringerBriefs in Electrical and Computer Engineering, 23–48. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9625-0_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Street, R. A., T. N. Ng, S. E. Ready y G. L. Whiting. "Printing". En Handbook of Visual Display Technology, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-35947-7_183-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Street, R. A., T. N. Ng, S. E. Ready y G. L. Whiting. "Printing". En Handbook of Visual Display Technology, 1289–303. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14346-0_183.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Loubere, Philip A. "Printing". En A History of Communication Technology, 65–97. New York, NY : Routledge, 2021.: Routledge, 2021. http://dx.doi.org/10.4324/9780429265723-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Gebhardt, Andreas, Julia Kessler y Laura Thurn. "Basics of 3D Printing Technology". En 3D Printing, 1–32. München: Carl Hanser Verlag GmbH & Co. KG, 2018. http://dx.doi.org/10.3139/9781569907030.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Safonov, Ilia V., Ilya V. Kurilin, Michael N. Rychagov y Ekaterina V. Tolstaya. "Integral Printing". En Signals and Communication Technology, 293–305. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05342-0_15.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kuznetsov, Yuri V. "Multicolor Printing". En Principles of Image Printing Technology, 233–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60955-9_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Loubere, Philip A. "Industrial printing". En A History of Communication Technology, 117–51. New York, NY : Routledge, 2021.: Routledge, 2021. http://dx.doi.org/10.4324/9780429265723-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Dahman, Yaser. "Biomaterials in 3D Printing/Bio-printing Techniques". En Biomaterials Science and Technology, 311–28. Boca Raton : Taylor & Francis, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429465345-13.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Bigdelou, Parnian, Alexander Roth, Akshata Datar y Moo-Yeal Lee. "Biological Sample Printing". En Microarray Bioprinting Technology, 71–104. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46805-1_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Printing Technology"

1

"Printing Technology Essentials of Several Special Printing Inks". En 2017 4th International Materials, Machinery and Civil Engineering Conference. Francis Academic Press, 2017. http://dx.doi.org/10.25236/matmce.2017.28.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Starkweather, Gary K. "Technology trends in electrophotographic printers". En Printing Technologies for Images, Gray Scale, and Color, editado por Derek B. Dove, Takao Abe y Joachim L. Heinzl. SPIE, 1991. http://dx.doi.org/10.1117/12.46344.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Furukawa, Tadahiro. "Printing technology for electronics". En 2016 International Conference on Electronics Packaging (ICEP). IEEE, 2016. http://dx.doi.org/10.1109/icep.2016.7486793.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Webb, Joseph W. "Commercial printing and electronic color printing". En IS&T/SPIE's Symposium on Electronic Imaging: Science & Technology, editado por Jan Bares. SPIE, 1995. http://dx.doi.org/10.1117/12.207590.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Abe, Takao. "Trends in color hard-copy technology in Japan". En Printing Technologies for Images, Gray Scale, and Color, editado por Derek B. Dove, Takao Abe y Joachim L. Heinzl. SPIE, 1991. http://dx.doi.org/10.1117/12.46329.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Drees, Friedrich-Wilhelm y Wolfgang Pekruhn. "Laptop page printer realized by thermal transfer technology". En Printing Technologies for Images, Gray Scale, and Color, editado por Derek B. Dove, Takao Abe y Joachim L. Heinzl. SPIE, 1991. http://dx.doi.org/10.1117/12.46337.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Sahana, V. W. y G. T. Thampi. "3D printing technology in industry". En 2018 2nd International Conference on Inventive Systems and Control (ICISC). IEEE, 2018. http://dx.doi.org/10.1109/icisc.2018.8399128.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

"Printing technology of biomedical devices". En 2016 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2016. http://dx.doi.org/10.1109/icit.2016.7474947.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ming, Joy, Ishita Ghosh, Jay Chen y Azza Abouzied. "Printing Paper Technology for Development". En the Fifth ACM Symposium. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2674377.2678268.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Saito, Takashi. "Nonimpact printing technology in Japan". En Electronic Imaging '90, Santa Clara, 11-16 Feb'97, editado por Victor A. Files y David Kessler. SPIE, 1990. http://dx.doi.org/10.1117/12.19863.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Printing Technology"

1

Cordero, Zachary y Amy M. Elliott. Collaboration for the Advancement of Indirect 3D Printing Technology. Office of Scientific and Technical Information (OSTI), junio de 2016. http://dx.doi.org/10.2172/1302926.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Hahn, Kim. Engaging fashion design students with evolving technology; digital printing. Ames: Iowa State University, Digital Repository, 2013. http://dx.doi.org/10.31274/itaa_proceedings-180814-458.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Zhang, Ling. Action Research in Apparel Design Using Digital Textile Printing Technology. Ames (Iowa): Iowa State University. Library, enero de 2019. http://dx.doi.org/10.31274/itaa.8378.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Joshi, Pooran. Multi-layer Printing of Complex Antennas Using Aerosol Jet Technology. Office of Scientific and Technical Information (OSTI), noviembre de 2019. http://dx.doi.org/10.2172/1606863.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Rolling, Virginia y Lushan Sun. The Perceptions of Wearable Accessory Designers in Applying 3D Printing Technology. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-1901.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Allen, Jeffrey W. y Bae-Ian Wu. Design and Fabrication of a Radio Frequency GRIN Lens Using 3D Printing Technology. Fort Belvoir, VA: Defense Technical Information Center, abril de 2013. http://dx.doi.org/10.21236/ada582804.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

DeSalle, Christopher S. y David A. Schilling. Feasibility Study of the Department of the Air Force Information Technology Commodities Council (ITCC) Digital Printing and Imagery (DPI) Initiative. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2006. http://dx.doi.org/10.21236/ada460428.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Diggs-McGee, Brandy, Eric Kreiger, Megan Kreiger y Michael Case. Print time vs. elapsed time : a temporal analysis of a continuous printing operation. Engineer Research and Development Center (U.S.), agosto de 2021. http://dx.doi.org/10.21079/11681/41422.

Texto completo
Resumen
In additive construction, ambitious goals to fabricate a concrete building in less than 24 hours are attempted. In the field, this goal relies on a metric of print time to make this conclusion, which excludes rest time and delays. The task to complete a building in 24 hours was put to the test with the first attempt at a fully continuous print of a structurally reinforced additively constructed concrete (ACC) building. A time series analysis was performed during the construction of a 512 ft2 (16’x32’x9.25’) building to explore the effect of delays on the completion time. This analysis included a study of the variation in comprehensive layer print times, expected trends and forecasting for what is expected in future prints of similar types. Furthermore, the study included a determination and comparison of print time, elapsed time, and construction time, as well as a look at the effect of environmental conditions on the delay events. Upon finishing, the analysis concluded that the 3D-printed building was completed in 14-hours of print time, 31.2- hours elapsed time, a total of 5 days of construction time. This emphasizes that reports on newly 3D-printed constructions need to provide a definition of time that includes all possible duration periods to communicate realistic capabilities of this new technology.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ford, David N., Tom Housel, Sandra Hom y Johnathan Mun. Make or Buy: An Analysis of the Impacts of 3D Printing Operations, 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship Maintenance and Modernization Cost Savings. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2015. http://dx.doi.org/10.21236/ad1016676.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Slattery, Kevin. Unsettled Topics on the Benefit of Additive Manufacturing for Production at the Point of Use in the Mobility Industry. SAE International, febrero de 2021. http://dx.doi.org/10.4271/epr2021006.

Texto completo
Resumen
An oft-cited benefit of additive manufacturing (AM), or “3D-printing,” technology is the ability to produce parts at the point of use by downloading a digital file and making the part at a local printer. This has the potential to greatly compress supply chains, lead times, inventories, and design iterations for custom parts. As a result of this, both manufacturing and logistics companies are investigating and investing in AM capacity for production at the point of use. However, it can be imagined that the feasibility and benefits are a function of size, materials, build time, manufacturing complexity, cost, and competing technologies. Because of this, there are instances where the viability of point-of-use manufacturing ranges from the perfect solution to the worst possible choice. Unsettled Topics on the Benefits of Additive Manufacturing for Production at the Point of Use in the Mobility Industry discusses the benefits, challenges, trade-offs, and other determining factors regarding this new level of AM possibilities.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía