Literatura académica sobre el tema "Principle of minimum entropy production"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Principle of minimum entropy production".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Principle of minimum entropy production"
Maes, Christian y Karel Netocny. "Minimum entropy production principle". Scholarpedia 8, n.º 7 (2013): 9664. http://dx.doi.org/10.4249/scholarpedia.9664.
Texto completoBartelt, Perry y Othmar Buser. "The principle of minimum entropy production and snow structure". Journal of Glaciology 50, n.º 170 (2004): 342–52. http://dx.doi.org/10.3189/172756504781829945.
Texto completoLisitsyn, Viktor, Nikolai Matveev, Nina Kamalova y Natalya Evsikova. "Maximum entropy production principle in forest dynamics modelling". BIO Web of Conferences 145 (2024): 03005. http://dx.doi.org/10.1051/bioconf/202414503005.
Texto completoAulin, V. V., S. V. Lysenko, A. V. Hrynkiv y D. V. Holub. "Thermodynamic substantiation of the direction of nonequilibrium processes in triadconjugations of machine parts based on the principles of maximum and minimum entropy". Problems of Tribology 27, n.º 2/104 (24 de junio de 2022): 55–63. http://dx.doi.org/10.31891/2079-1372-2022-104-2-55-63.
Texto completoMaes, Christian y Karel Netočný. "Minimum entropy production principle from a dynamical fluctuation law". Journal of Mathematical Physics 48, n.º 5 (mayo de 2007): 053306. http://dx.doi.org/10.1063/1.2738753.
Texto completoMárkus, Ferenc y Katalin Gambár. "Minimum Entropy Production Effect on a Quantum Scale". Entropy 23, n.º 10 (15 de octubre de 2021): 1350. http://dx.doi.org/10.3390/e23101350.
Texto completoWang, Chengpeng, Longsheng Xue y Keming Cheng. "Application of the minimum entropy production principle to shock reflection induced by separation". Journal of Fluid Mechanics 857 (27 de octubre de 2018): 784–805. http://dx.doi.org/10.1017/jfm.2018.762.
Texto completoSuzuki, Masuo. "Irreversibility and entropy production in transport phenomena, III—Principle of minimum integrated entropy production including nonlinear responses". Physica A: Statistical Mechanics and its Applications 392, n.º 2 (enero de 2013): 314–25. http://dx.doi.org/10.1016/j.physa.2012.08.021.
Texto completoXu, Guobin, Lina Zhao y Chih Ted Yang. "Derivation and verification of minimum energy dissipation rate principle of fluid based on minimum entropy production rate principle". International Journal of Sediment Research 31, n.º 1 (marzo de 2016): 16–24. http://dx.doi.org/10.1016/j.ijsrc.2014.09.004.
Texto completoHohm, Uwe y Christoph Schiller. "Testing the Minimum System Entropy and the Quantum of Entropy". Entropy 25, n.º 11 (3 de noviembre de 2023): 1511. http://dx.doi.org/10.3390/e25111511.
Texto completoTesis sobre el tema "Principle of minimum entropy production"
Mamouni, Mahdi-Amine. "Thermodynamique des réseaux et application à la thermoélectricité". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST131.
Texto completoIn this context, where the evolution of a system is governed by the gradients of intensive quantities, it becomes possible to completely model the behavior of machines, the produced power, and the created entropy, thus surpassing the simple endoreversible framework. In the case of systems described by a single intensive quantity, the behavior found is that of simple empirical laws such as Ohm’s law, Fourier’s law, or Darcy’s law. When several coupled intensive quantities are involved, the behavior becomes complex to model, especially if the system exhibits inhomogeneities in the physical properties of the working fluid. The work carried out in this thesis addresses these issues. It is based on the design of a thermodynamic network simulator, specifically applied to thermoelectricity, which is a particularly fruitful model system. The system is described by force-flux relations and a finite volume approach, which allows for the reconstruction of a thermodynamic network faithful to the studied system. This approach rigorously takes into account the hypothesis of continuity of intensive quantities between each volume element, whose validity is first demonstrated by considering the fluctuation of entropy production and its residual character in a stationary situation. This result also helped clarify the debate on the principles of entropy production minimization, a debate that still stirs part of the scientific community. This approach was validated by several simulations of thermoelectric networks in various regimes, stationary, transient, and harmonic. The obtained response includes both linear and nonlinear electrical and thermal terms, the latter resulting from energy-matter couplings. Beyond thermoelectricity, this simulator made it possible to integrate ferroelectric and antiferroelectric materials, whose thermal conductivity varies according to polarization. Transient simulations including materials with modifiable thermal conductivity thus allow determining the heat redistribution time in the network following this modulation. This work paves the way for complex thermoelectric simulations that are not accessible by other means, such as the study and design of heterogeneous thermoelectric modules. The integration of local description over volume allows for the emergence of global behavior resulting from the consideration of exotic inclusion effects on coupling, suggesting new development perspectives, notably in the context of thermomagnetic effects arising from local current loops
Hogg, David W. (David Wardell). "The principle of maximum entropy production in a simple model of a convection cell". Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/26841.
Texto completoDe, Lucca Brenno Jason Sanzio Peter. "Linear irreversible thermodynamics". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20975/.
Texto completoTomaras, Panagiotis J. "Decomposition of general queueing network models : an investigation into the implementation of hierarchical decomposition schemes of general closed queueing network models using the principle of minimum relative entropy subject to fully decomposable constraints". Thesis, University of Bradford, 1989. http://hdl.handle.net/10454/4212.
Texto completoSečkárová, Vladimíra. "Kombinování diskrétních pravděpodobnostních rozdělení pomocí křížové entropie pro distribuované rozhodování". Doctoral thesis, 2015. http://www.nusl.cz/ntk/nusl-350939.
Texto completoLibros sobre el tema "Principle of minimum entropy production"
Tadmor, Eitan. A minimum entropy principle in the gas dynamics equation. Hampton, Va: ICASE, 1986.
Buscar texto completoCapítulos de libros sobre el tema "Principle of minimum entropy production"
Rosenkrantz, R. D. "The Minimum Entropy Production Principle (1980)". En E. T. Jaynes: Papers on Probability, Statistics and Statistical Physics, 401–24. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-6581-2_14.
Texto completoBrenig, Wilhelm. "The Minimum Entropy Production Variational Principle". En Statistical Theory of Heat, 201–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74685-7_40.
Texto completoAcosta, Griselda, Eric Smith y Vladik Kreinovich. "A Natural Explanation for the Minimum Entropy Production Principle". En How Uncertainty-Related Ideas Can Provide Theoretical Explanation For Empirical Dependencies, 7–14. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65324-8_2.
Texto completoAcosta, Griselda, Eric Smith y Vladik Kreinovich. "Analytical Techniques for Analyzing How Systems Change with Time: A Natural Explanation for the Minimum Entropy Production Principles". En Studies in Systems, Decision and Control, 19–25. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46413-4_5.
Texto completoCampbell, L. Lore. "Geometric Ideas in Minimum Cross-Entropy". En Entropy Measures, Maximum Entropy Principle and Emerging Applications, 103–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36212-8_5.
Texto completoGuiasu, Silviu. "Minimum Mean Deviation from the Steady-State Condition in Queueing Theory". En Entropy Measures, Maximum Entropy Principle and Emerging Applications, 163–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36212-8_8.
Texto completoMiller, David y Kenneth Rose. "Tree-Structured Clustering via the Minimum Cross Entropy Principle". En Maximum Entropy and Bayesian Methods, 107–20. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8729-7_7.
Texto completoSeleznev, Vladimir D. y Leonid M. Martyushev. "Fluctuations, Trajectory Entropy and Ziegler’s Maximum Entropy Production Principle". En Understanding Complex Systems, 97–112. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40154-1_5.
Texto completode Sá, J. P. Marques, João Gama, Raquel Sebastião y Luís A. Alexandre. "Decision Trees Using the Minimum Entropy-of-Error Principle". En Computer Analysis of Images and Patterns, 799–807. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03767-2_97.
Texto completoLineweaver, Charles H. "The Entropy of the Universe and the Maximum Entropy Production Principle". En Understanding Complex Systems, 415–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40154-1_22.
Texto completoActas de conferencias sobre el tema "Principle of minimum entropy production"
Marsik, Frantisek, Pavel Sopuch y J. Blaha. "NEW NUCLEATION THEORIES AND PRINCIPLE OF MINIMUM ENTROPY PRODUCTION". En Physical Chemistry of Aqueous Systems: Meeting the Needs of Industry. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/icpws-1994.360.
Texto completoKiss, Endre. "From Minimum Entropy Production Principle To Minimum Information Loss With Elliptic Type Quasilinear PDEs". En BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: 23rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2004. http://dx.doi.org/10.1063/1.1751370.
Texto completoGonzalez Narvaez, Ruth Estephania, Federico Vazquez Hurtado y Mariano López de Haro. "The minimum entropy production principle and heat transport in solids with internal structure". En Entropy 2021: The Scientific Tool of the 21st Century. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/entropy2021-09801.
Texto completoGeskin, Ernest S. "Application of the Principle of Minimum of Entropy Production to the Analysis of the Eutectic Solidification". En ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39538.
Texto completoGuo, Jiangfeng, Mingtian Xu y Lin Cheng. "A New Criterion for Assessing Heat Exchanger Performance". En 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22315.
Texto completoWang, C. P., W. S. Wang, P. Xu, L. S. Xue, Y. Jiao, J. F. Yang y X. Yang. "Application of the Minimum Entropy Production Principle to the Asymmetric Leading-shocks Reflection of Oblique Shock Train". En Proceedings of the 32nd International Symposium on Shock Waves (ISSW32 2019). Singapore: Research Publishing Services, 2019. http://dx.doi.org/10.3850/978-981-11-2730-4_0269-cd.
Texto completoBussey, Gillian y Mark Lewis. "Analysis of Highly Unsteady and Quasi-steady Shocks in Hypersonic Inlets Based on the Principle of Minimum Entropy Production". En 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-5938.
Texto completoHaddad, Fouad y Peiwen Li. "Entropy Generation Minimization to Optimize Heat Transfer in CSP Technologies Using Molten Salt System NaCl/KCl/MgCl2 as Heat Transfer Fluids". En ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-67195.
Texto completoNatalini, Gianni y Enrico Sciubba. "Choice of the Pseudo-Optimal Configuration of a Cooled Gas-Turbine Blade Based on a Constrained Minimization of the Global Entropy Production Rate". En ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-gt-509.
Texto completoHerpe, J., D. Bougeard, S. Russeil y B. Baudoin. "Numerical Investigation of Entropy Generation in the Case of a Finned Oval Tube With a Punched Longitudinal Vortex Generator in Form of Delta Winglet". En ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98393.
Texto completoInformes sobre el tema "Principle of minimum entropy production"
Zhang, Xiangxiong y Chi-Wang Shu. A Minimum Entropy Principle of High Order Schemes for Gas Dynamics Equations. Fort Belvoir, VA: Defense Technical Information Center, julio de 2011. http://dx.doi.org/10.21236/ada557667.
Texto completoEssex, C. y D. C. Kennedy. Minimum entropy production of neutrino radiation in the steady state. Office of Scientific and Technical Information (OSTI), agosto de 1997. http://dx.doi.org/10.2172/532665.
Texto completoUnknown, Author. L51658 Subsea Pig Recovery Concepts. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), octubre de 1991. http://dx.doi.org/10.55274/r0010603.
Texto completoOcampo-Gaviria, José Antonio, Roberto Steiner Sampedro, Mauricio Villamizar Villegas, Bibiana Taboada Arango, Jaime Jaramillo Vallejo, Olga Lucia Acosta-Navarro y Leonardo Villar Gómez. Report of the Board of Directors to the Congress of Colombia - March 2023. Banco de la República de Colombia, junio de 2023. http://dx.doi.org/10.32468/inf-jun-dir-con-rep-eng.03-2023.
Texto completo