Literatura académica sobre el tema "Primal-Dual learning algorithm"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Primal-Dual learning algorithm".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Primal-Dual learning algorithm"
Overman, Tom, Garrett Blum y Diego Klabjan. "A Primal-Dual Algorithm for Hybrid Federated Learning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 13 (24 de marzo de 2024): 14482–89. http://dx.doi.org/10.1609/aaai.v38i13.29363.
Texto completoYang, Peng y Ping Li. "Distributed Primal-Dual Optimization for Online Multi-Task Learning". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 6631–38. http://dx.doi.org/10.1609/aaai.v34i04.6139.
Texto completoWang, Shuai, Yanqing Xu, Zhiguo Wang, Tsung-Hui Chang, Tony Q. S. Quek y Defeng Sun. "Beyond ADMM: A Unified Client-Variance-Reduced Adaptive Federated Learning Framework". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 8 (26 de junio de 2023): 10175–83. http://dx.doi.org/10.1609/aaai.v37i8.26212.
Texto completoLai, Hanjiang, Yan Pan, Cong Liu, Liang Lin y Jie Wu. "Sparse Learning-to-Rank via an Efficient Primal-Dual Algorithm". IEEE Transactions on Computers 62, n.º 6 (junio de 2013): 1221–33. http://dx.doi.org/10.1109/tc.2012.62.
Texto completoTao, Wei, Wei Li, Zhisong Pan y Qing Tao. "Gradient Descent Averaging and Primal-dual Averaging for Strongly Convex Optimization". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 11 (18 de mayo de 2021): 9843–50. http://dx.doi.org/10.1609/aaai.v35i11.17183.
Texto completoDing, Yuhao y Javad Lavaei. "Provably Efficient Primal-Dual Reinforcement Learning for CMDPs with Non-stationary Objectives and Constraints". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 6 (26 de junio de 2023): 7396–404. http://dx.doi.org/10.1609/aaai.v37i6.25900.
Texto completoBai, Qinbo, Amrit Singh Bedi, Mridul Agarwal, Alec Koppel y Vaneet Aggarwal. "Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Primal-Dual Approach". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 4 (28 de junio de 2022): 3682–89. http://dx.doi.org/10.1609/aaai.v36i4.20281.
Texto completoBai, Qinbo, Amrit Singh Bedi y Vaneet Aggarwal. "Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Conservative Natural Policy Gradient Primal-Dual Algorithm". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 6 (26 de junio de 2023): 6737–44. http://dx.doi.org/10.1609/aaai.v37i6.25826.
Texto completoGupta, Ankita, Lakhwinder Kaur y Gurmeet Kaur. "Drought stress detection technique for wheat crop using machine learning". PeerJ Computer Science 9 (19 de mayo de 2023): e1268. http://dx.doi.org/10.7717/peerj-cs.1268.
Texto completoLiu, Bo, Ian Gemp, Mohammad Ghavamzadeh, Ji Liu, Sridhar Mahadevan y Marek Petrik. "Proximal Gradient Temporal Difference Learning: Stable Reinforcement Learning with Polynomial Sample Complexity". Journal of Artificial Intelligence Research 63 (15 de noviembre de 2018): 461–94. http://dx.doi.org/10.1613/jair.1.11251.
Texto completoTesis sobre el tema "Primal-Dual learning algorithm"
Bouvier, Louis. "Apprentissage structuré et optimisation combinatoire : contributions méthodologiques et routage d'inventaire chez Renault". Electronic Thesis or Diss., Marne-la-vallée, ENPC, 2024. http://www.theses.fr/2024ENPC0046.
Texto completoThis thesis stems from operations research challenges faced by Renault supply chain. Toaddress them, we make methodological contributions to the architecture and training of neural networks with combinatorial optimization (CO) layers. We combine them with new matheuristics to solve Renault’s industrial inventory routing problems.In Part I, we detail applications of neural networks with CO layers in operations research. We notably introduce a methodology to approximate constraints. We also solve some off- policy learning issues that arise when using such layers to encode policies for Markov decision processes with large state and action spaces. While most studies on CO layers rely on supervised learning, we introduce a primal-dual alternating minimization scheme for empirical risk minimization. Our algorithm is deep learning-compatible, scalable to large combinatorial spaces, and generic. In Part II, we consider Renault European packaging return logistics. Our rolling-horizon policy for the operational-level decisions is based on a new large neighborhood search for the deterministic variant of the problem. We demonstrate its efficiency on large-scale industrialinstances, that we release publicly, together with our code and solutions. We combine historical data and experts’ predictions to improve performance. A version of our policy has been used daily in production since March 2023. We also consider the tactical-level route contracting process. The sheer scale of this industrial problem prevents the use of classic stochastic optimization approaches. We introduce a new algorithm based on methodological contributions of Part I for empirical risk minimization
Hendrich, Christopher. "Proximal Splitting Methods in Nonsmooth Convex Optimization". Doctoral thesis, Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-149548.
Texto completoActas de conferencias sobre el tema "Primal-Dual learning algorithm"
Qin, Jingsheng, Lingjian Ye, Xinmin Zhang, Feifan Shen, Wei Wang y Longying Mao. "A Twin Primal-Dual DDPG Algorithm for Safety-Constrained Reinforcement Learning". En 2024 China Automation Congress (CAC), 2400–2405. IEEE, 2024. https://doi.org/10.1109/cac63892.2024.10864510.
Texto completoLee, Donghwan y Niao He. "Stochastic Primal-Dual Q-Learning Algorithm For Discounted MDPs". En 2019 American Control Conference (ACC). IEEE, 2019. http://dx.doi.org/10.23919/acc.2019.8815275.
Texto completoLee, Donghwan, Hyungjin Yoon y Naira Hovakimyan. "Primal-Dual Algorithm for Distributed Reinforcement Learning: Distributed GTD". En 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8619839.
Texto completoBianchi, Pascal, Walid Hachem y Iutzeler Franck. "A stochastic coordinate descent primal-dual algorithm and applications". En 2014 IEEE 24th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2014. http://dx.doi.org/10.1109/mlsp.2014.6958866.
Texto completoWang, Shijun, Baocheng Zhu, Lintao Ma y Yuan Qi. "A Riemannian Primal-dual Algorithm Based on Proximal Operator and its Application in Metric Learning". En 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019. http://dx.doi.org/10.1109/ijcnn.2019.8852367.
Texto completoQu, Yang, Jinming Ma y Feng Wu. "Safety Constrained Multi-Agent Reinforcement Learning for Active Voltage Control". En Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/21.
Texto completoSankaran, Raman, Francis Bach y Chiranjib Bhattacharyya. "Learning With Subquadratic Regularization : A Primal-Dual Approach". En Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/272.
Texto completoWan, Yuanyu, Nan Wei y Lijun Zhang. "Efficient Adaptive Online Learning via Frequent Directions". En Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/381.
Texto completo