Literatura académica sobre el tema "Predictive Patterns"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Predictive Patterns".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Predictive Patterns"
Tao, Lv, Yongtao Hao, Hao Yijie y Shen Chunfeng. "K-Line Patterns’ Predictive Power Analysis Using the Methods of Similarity Match and Clustering". Mathematical Problems in Engineering 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/3096917.
Texto completoKaufmann, Mareile, Simon Egbert y Matthias Leese. "Predictive Policing and the Politics of Patterns". British Journal of Criminology 59, n.º 3 (7 de diciembre de 2018): 674–92. http://dx.doi.org/10.1093/bjc/azy060.
Texto completoRew, Jehyeok, Sungwoo Park, Yongjang Cho, Seungwon Jung y Eenjun Hwang. "Animal Movement Prediction Based on Predictive Recurrent Neural Network". Sensors 19, n.º 20 (11 de octubre de 2019): 4411. http://dx.doi.org/10.3390/s19204411.
Texto completoPeppler-Lisbach, Cord. "Predictive modelling of historical and recent land-use patterns". Phytocoenologia 33, n.º 4 (19 de noviembre de 2003): 565–90. http://dx.doi.org/10.1127/0340-269x/2003/0033-0565.
Texto completoChoi, Minkyu y Jun Tani. "Predictive Coding for Dynamic Visual Processing: Development of Functional Hierarchy in a Multiple Spatiotemporal Scales RNN Model". Neural Computation 30, n.º 1 (enero de 2018): 237–70. http://dx.doi.org/10.1162/neco_a_01026.
Texto completoCollins, Tom, Robin Laney, Alistair Willis y Paul H. Garthwaite. "Modeling Pattern Importance in Chopin's Mazurkas". Music Perception 28, n.º 4 (1 de abril de 2011): 387–414. http://dx.doi.org/10.1525/mp.2011.28.4.387.
Texto completoDaniel Breslin, Mg Ing Roberto. "ANALYSIS MODEL FOR NON-PREDICTIVE PATTERNS OF NON-IONIZING RADIATIONS". Engineering and Technology Journal 07, n.º 12 (21 de diciembre de 2022): 1755–68. http://dx.doi.org/10.47191/etj/v7i12.01.
Texto completoJu, Yeong Jo, Jeong Ran Lim y Euy Sik Jeon. "Prediction of AI-Based Personal Thermal Comfort in a Car Using Machine-Learning Algorithm". Electronics 11, n.º 3 (23 de enero de 2022): 340. http://dx.doi.org/10.3390/electronics11030340.
Texto completoChien, Wen T. y W. C. Hung. "Investigation on the Predictive Model for Burr in Laser Cutting Titanium Alloy". Materials Science Forum 526 (octubre de 2006): 133–38. http://dx.doi.org/10.4028/www.scientific.net/msf.526.133.
Texto completoDing, Jun, Anthony S. Wexler y Stuart A. Binder-Macleod. "A predictive model of fatigue in human skeletal muscles". Journal of Applied Physiology 89, n.º 4 (1 de octubre de 2000): 1322–32. http://dx.doi.org/10.1152/jappl.2000.89.4.1322.
Texto completoTesis sobre el tema "Predictive Patterns"
Villaume, Erik. "Predicting customer level risk patterns in non-life insurance". Thesis, KTH, Matematisk statistik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-103590.
Texto completoFerguson, Haylie Anne. "A GIS Approach to Archaeological Settlement Patterns and Predictive Modeling in Chihuahua, Mexico". BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7069.
Texto completoFerguson, Megan Caton. "Cetacean population density in the Eastern Pacific Ocean : analyzing patterns with predictive spatial models /". Online version in PDF format, 2005. http://swfsc.noaa.gov/uploadedFiles/Divisions/PRD/Programs/Coastal_Marine_Mammal/Ferguson2005dissertation.pdf.
Texto completoVita. Includes bibliographical references. Also available online in PDF format via the National Marine Fisheries Service Coastal Marine Mammal Program (CMMP) home page.
Daughtrey, Cannon Stewart. "Pima County's Open Space Ranch Preserves: Predictive Modeling of Site Locations for Three Time Periods at Rancho Seco". Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/318809.
Texto completoBrownlow, Briana Nicole. "Patterns of Heart Rate Variability Predictive of Internalizing Symptoms in a Non-Clinical Youth Sample". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1518179804584445.
Texto completoBeam, Lauren. "Are holding patterns predictive of infant attachment classification in 12 to 18 month old infants?" Click here to access thesis, 2009. http://www.georgiasouthern.edu/etd/archive/spring2009/lauren_d_beam/beam_lauren_d_200905_ms.pdf.
Texto completo"A thesis submitted to the Graduate Faculty of Georgia Southern University in partial fulfillment of the requirements for the degree Master of Science." Directed by Janice Kennedy. ETD. Includes bibliographical references (p. 54-61) and appendices.
Castillo, Guevara Ramon Daniel. "The emergence of cognitive patterns in learning: Implementation of an ecodynamic approach". University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1396531855.
Texto completoSaha, Sourabh Kumar. "Predictive design and fabrication of complex micro and nano patterns via wrinkling for scalable and affordable manufacturing". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/93860.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 189-193).
There is a demonstrated need for scalable and affordable manufacturing of complex micro and nano scale structures for applications such as fluidics-based medical diagnostics and photonicsbased sensing. Although high-rate patterning of these structures is feasible via template/stamp based processes, scalability and affordability are often limited by expensive and slow template fabrication processes. The purpose of this work was to develop a wrinkling-based manufacturing process that eliminates the need for an expensive and slow template fabrication step. Wrinkling of thin films is a low-cost buckling-driven patterning process that provides an alternate route to manufacturing scale-up. However, this process is currently of limited practical import because predictive design is restricted to a small set of simple/elementary patterns. In this work, predictive models, tools, and techniques were developed to enable the design and fabrication of a variety of complex wrinkled patterns. The shape and size of wrinkled patterns is determined by the interaction among geometry, material properties, and loading. Complexity in wrinkle patterns often arises due to uncontrolled/undesirable non-uniformities in these process parameters. Due to the confounding effect of simultaneously acting non-uniformities, it is difficult to link wrinkle shape/size to process parameters for such systems. To solve this problem, experimental and computational tools were developed to (i) individually tune/control the non-uniformities in these parameters and (ii) probe the effect of these parameters on the wrinkled pattern. The data generated from these tools was then used to link process parameters to pattern complexity. Contributions were made in the following specific areas: (1) Tunable hierarchical wrinkled patterns via geometric pre-patterning Although complex hierarchical wrinkled patterns have been fabricated via geometric prepatterning in the past, predictive design of such patterns is not feasible. This is primarily because of lack of appropriate process models that can accurately capture the physical effect of prepatterns on the wrinkle generation process. Herein, an analytical model was developed and verified to predict the hierarchical patterns that arise due to geometric non-uniformity. This model elucidates and captures the fundamental energetic response of the system to pre-patterns that distinguishes a pre-patterned system from a flat non-patterned system. The ability to capture this essential physics provides valuable insight into the process that is not available via empirical models that are based on a limited data set. This insight enables one to (i) explore the full design space and identify optimal operating regions, (ii) design and fabricate tunable wrinkled patterns that can be deterministically switched across hierarchical and non-hierarchical states and (iii) explain and predict patterns that are theoretically feasible yet practically inaccessible. (2) Period doubling via high compressive strains Although period doubling at high compressive strains has been demonstrated in the past, models that accurately predict the onset of period doubling are not available. This is due to the inability of existing models to capture the nonlinear stress versus strain material response as the physical basis for period doubling. For example, existing models erroneously assume that the onset of period doubling is independent of stiffness moduli. Herein, models driven by finite element analysis were developed to accurately link the onset of period doubling to nonlinearities that arise during large deformations. These models enable one to accurately separate the effect of individual process parameters on the onset of period doubling. This enables one to extract valuable process-relevant information from the observation of the period doubling phenomenon that is otherwise not available. (3) Attractors and repellers as localized material defects for curved wrinkles Curved wrinkles have been demonstrated in the past during equibiaxial compression of nonuniform materials. However, predictive design of target patterns via curved wrinkles is not feasible at present due to the lack of simple yet effective design rules. Generation of such design rules is hindered by the confounding effect of biaxial compression and localized material nonuniformities. Herein, an elegant design rule for in-plane bending of wrinkles has been generated for the case of uniaxial compression. Based on this, the concept of attractors and repellers as distinct localized material defects has been proposed and experimentally verified. Attractors are relatively compliant defects that pull wrinkles toward them; whereas repellers are relatively stiffer defects that push wrinkles away. These defects may be used as the building blocks to locally alter the in-plane orientation of otherwise uniformly aligned wrinkles during uniaxial compression. The set of predictive models generated in this work would enable a designer to perform inverse pattern design of complex wrinkled structures, i.e., to select the appropriate set of process parameters that are required to fabricate the desired pattern. By replacing other expensive processes for complex patterning, this would reduce the time and cost of manufacturing a variety of functional micro and nano scale patterns by a factor of ~10 for low-volume applications and by ~10% for high-volume applications.
by Sourabh Kumar Saha.
Ph. D.
Burton, A. Kim. "Patterns of lumbar sagittal mobility and their predictive value in the natural history of back and sciatic pain". Thesis, University of Huddersfield, 1987. http://eprints.hud.ac.uk/id/eprint/8663/.
Texto completoChhaya, Mohamed. "Traditional and modern medicine in primary care - prevalence, patterns and predictive factors of utilisation in Makwarela township, Vhembe district, Limpopo". Thesis, Stellenbosch : University of Stellenbosch, 2015. http://hdl.handle.net/10019.1/97229.
Texto completoLibros sobre el tema "Predictive Patterns"
Leenaars, Antoon A. Suicide notes: Predictive clues and patterns. New York, N.Y: Human Sciences Press, 1988.
Buscar texto completoG, Moore Donald y Geological Survey (U.S.), eds. Predictive spatial modeling of narcotic crop growth patterns. Sioux Falls, S.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1986.
Buscar texto completoG, Moore Donald y Geological Survey (U.S.), eds. Predictive spatial modeling of narcotic crop growth patterns. Sioux Falls, S.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1986.
Buscar texto completoBartlett, Sheryl Anne. Predictive and posterior distributions for normal multivariate data with missing monotone patterns. Toronto: University of Toronto, Dept. of Statistics, 1985.
Buscar texto completoG, Anderson David. Archaeology, history, and predictive modeling research at Fort Polk, 1972-2002. Tuscaloosa: University of Alabama Press, 2003.
Buscar texto completoDietrich, Daniel S. Predicting radiation characteristics from antenna physical dimensions. Monterey, Calif: Naval Postgraduate School, 1992.
Buscar texto completoTremblay, Pierre. Patterns in criminal achievement: Wilson and Abrahamse revisited. Montréal: Université de Montréal, 1999.
Buscar texto completo1939-, Wyss Max, Shimazaki K. 1946- y Ito Akihiko, eds. Seismicity patterns, their statistical significance and physical meaning. Basel: Birkhäuser Verlag, 1999.
Buscar texto completoLundholm, Steven E. Predicting antenna parameters from antenna physical dimensions. Monterey, Calif: Naval Postgraduate School, 1993.
Buscar texto completoPham, Duc Truong. Neural Networks for Identification, Prediction and Control. London: Springer London, 1995.
Buscar texto completoCapítulos de libros sobre el tema "Predictive Patterns"
Zettersten, Martin. "Learning by predicting: How predictive processing informs language development". En Patterns in Language and Linguistics, editado por Beatrix Busse y Ruth Moehlig-Falke, 255–88. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110596656-010.
Texto completoHannachi, Abdelwaheb. "Persistent, Predictive and Interpolated Patterns". En Springer Atmospheric Sciences, 171–200. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67073-3_8.
Texto completoLv, Tao y Yongtao Hao. "Further Analysis of Candlestick Patterns’ Predictive Power". En Communications in Computer and Information Science, 73–87. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6385-5_7.
Texto completoFinkelstein, Martin y Wendiann Sethi. "Patterns of Faculty Internationalization: A Predictive Model". En The Internationalization of the Academy, 237–57. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7278-6_11.
Texto completoMihelčić, Matej, Sašo Džeroski, Nada Lavrač y Tomislav Šmuc. "Redescription Mining with Multi-target Predictive Clustering Trees". En New Frontiers in Mining Complex Patterns, 125–43. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39315-5_9.
Texto completoShen, Cheng-Dong, Tie-Jun Li y Si-Kun Li. "A Predictive Direction Guided Fast Motion Estimation Algorithm". En Computer Analysis of Images and Patterns, 188–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11556121_24.
Texto completoTorim, Ants, Innar Liiv, Chahinez Ounoughi y Sadok Ben Yahia. "Pattern Based Software Architecture for Predictive Maintenance". En Communications in Computer and Information Science, 26–38. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17030-0_3.
Texto completoNowosielski, Adam. "Two-Letters-Key Keyboard for Predictive Touchless Typing with Head Movements". En Computer Analysis of Images and Patterns, 68–79. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64689-3_6.
Texto completoPourbafrani, Mahsa, Shreya Kar, Sebastian Kaiser y Wil M. P. van der Aalst. "Remaining Time Prediction for Processes with Inter-case Dynamics". En Lecture Notes in Business Information Processing, 140–53. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98581-3_11.
Texto completoLeibovitz, Rotem, Jhonathan Osin, Lior Wolf, Guy Gurevitch y Talma Hendler. "fMRI Neurofeedback Learning Patterns are Predictive of Personal and Clinical Traits". En Lecture Notes in Computer Science, 282–94. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-16431-6_27.
Texto completoActas de conferencias sobre el tema "Predictive Patterns"
Ibrahim, Ronny K., Eliathamby Ambikairajah, Branko G. Celler y Nigel H. Lovell. "Linear predictive modelling of gait patterns". En ICASSP 2009 - 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009. http://dx.doi.org/10.1109/icassp.2009.4959611.
Texto completoAthineos, Marios, Hynek Hermansky y Daniel P. W. Ellis. "LP-TRAP: linear predictive temporal patterns". En Interspeech 2004. ISCA: ISCA, 2004. http://dx.doi.org/10.21437/interspeech.2004-344.
Texto completoOrtu, Marco, Tracy Hall, Michele Marchesi, Roberto Tonelli, David Bowes y Giuseppe Destefanis. "Mining Communication Patterns in Software Development". En PROMISE'18: The 14th International Conference on Predictive Models and Data Analytics in Software Engineering. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3273934.3273943.
Texto completoDey, Tapajit, Yuxing Ma y Audris Mockus. "Patterns of Effort Contribution and Demand and User Classification based on Participation Patterns in NPM Ecosystem". En PROMISE'19: The Fifteenth International Conference on Predictive Models and Data Analytics in Software Engineering. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3345629.3345634.
Texto completoRoor, Roman, Michael Karg, Andy Liao, Wenhui Lei y Alexandra Kirsch. "Predictive ridesharing based on personal mobility patterns". En 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017. http://dx.doi.org/10.1109/ivs.2017.7995895.
Texto completoBatal, Iyad y Milos Hauskrecht. "Constructing classification features using minimal predictive patterns". En the 19th ACM international conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1871437.1871549.
Texto completoChitu, Claudia, Mokhloss I. Khadem y Valentin Sgarciu. "Predictive modeling of occupancy patterns in smart buildings". En 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). IEEE, 2017. http://dx.doi.org/10.1109/idaacs.2017.8095167.
Texto completoPark, Eunjung, Christos Kartsaklis y John Cavazos. "HERCULES: Strong Patterns towards More Intelligent Predictive Modeling". En 2014 43nd International Conference on Parallel Processing (ICPP). IEEE, 2014. http://dx.doi.org/10.1109/icpp.2014.26.
Texto completoKrah, Jens Onno, Tobias Schmidt y Joachim Holtz. "Predictive Current Control with Synchronous Optimal Pulse Patterns". En 2019 2nd International Conference on Smart Grid and Renewable Energy (SGRE). IEEE, 2019. http://dx.doi.org/10.1109/sgre46976.2019.9021105.
Texto completoZhang, Wenjing y Xin Feng. "Predictive temporal patterns detection in multivariate dynamic data system". En 2012 10th World Congress on Intelligent Control and Automation (WCICA 2012). IEEE, 2012. http://dx.doi.org/10.1109/wcica.2012.6357988.
Texto completoInformes sobre el tema "Predictive Patterns"
Shaw, J., D. R. Sharpe, J. Harris, D. Lemkow y D. Pehleman. Digital landform patterns for glaciated regions of Canada - a predictive model of flowlines based on topographic and LANDSAT 7 data. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2010. http://dx.doi.org/10.4095/286248.
Texto completoBrodie, Katherine, Ian Conery, Nicholas Cohn, Nicholas Spore y Margaret Palmsten. Spatial variability of coastal foredune evolution, part A : timescales of months to years. Engineer Research and Development Center (U.S.), julio de 2021. http://dx.doi.org/10.21079/11681/41322.
Texto completoJaroszewicz, Thomas, Elizabeth Bleszynski, Marek Bleszynski y Vladimir Rokhlin. Advanced Antenna Pattern Prediction Software. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2006. http://dx.doi.org/10.21236/ada452136.
Texto completoPeterson, P. F. y I. K. Paik. MODFLOW 2.0: A program for predicting moderator flow patterns. Office of Scientific and Technical Information (OSTI), julio de 1991. http://dx.doi.org/10.2172/10158938.
Texto completoJai, Tun-Min (Catherine). Predicting Consumers' Apparel Purchase Decisions from Brain Activity Patterns. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-377.
Texto completoPeterson, P. F. y I. K. Paik. MODFLOW 2. 0: A program for predicting moderator flow patterns. Office of Scientific and Technical Information (OSTI), julio de 1991. http://dx.doi.org/10.2172/5112906.
Texto completoApiyo, Eric, Zita Ekeocha, Stephen Robert Byrn y Kari L. Clase. Improving Pharmacovigilliance Quality Management System in the Pharmacy and Poisions Board of Kenya. Purdue University, diciembre de 2021. http://dx.doi.org/10.5703/1288284317444.
Texto completoWideman, Jr., Robert F., Nicholas B. Anthony, Avigdor Cahaner, Alan Shlosberg, Michel Bellaiche y William B. Roush. Integrated Approach to Evaluating Inherited Predictors of Resistance to Pulmonary Hypertension Syndrome (Ascites) in Fast Growing Broiler Chickens. United States Department of Agriculture, diciembre de 2000. http://dx.doi.org/10.32747/2000.7575287.bard.
Texto completoPeterson, P. F. y I. K. Paik. Code requirements document: MODFLOW 2.1: A program for predicting moderator flow patterns. Office of Scientific and Technical Information (OSTI), marzo de 1992. http://dx.doi.org/10.2172/10169804.
Texto completoMcKenzie, Donald, David L. Peterson y Ernesto Alvarado. Predicting the effect of fire on large-scale vegetation patterns in North America. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1996. http://dx.doi.org/10.2737/pnw-rp-489.
Texto completo