Índice
Literatura académica sobre el tema "Prédiction de pics"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Prédiction de pics".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Prédiction de pics"
Mebarki, Ahmed. "Modèle d'atténuation sismique: prédiction probabiliste des pics d'accélération". Revue Française de Génie Civil 8, n.º 9-10 (diciembre de 2004): 1071–86. http://dx.doi.org/10.1080/12795119.2004.9692641.
Texto completoMebarki, Ahmed. "Modèle d'atténuation sismique : prédiction probabiliste des pics d'accélération". Revue française de génie civil 8, n.º 8 (28 de agosto de 2004): 1071–86. http://dx.doi.org/10.3166/rfgc.8.1071-1086.
Texto completoHARINAIVO, A., H. HAUDUC y I. TAKACS. "Anticiper l’impact de la météo sur l’influent des stations d’épuration grâce à l’intelligence artificielle". Techniques Sciences Méthodes 3 (20 de marzo de 2023): 33–42. http://dx.doi.org/10.36904/202303033.
Texto completoTidjani, A. E. B., D. Yebdri, J. C. Roth y Z. Derriche. "Exploration des séries chronologiques d’analyse de la qualité des eaux de surface dans le bassin de la Tafna (Algérie)". Revue des sciences de l'eau 19, n.º 4 (17 de enero de 2007): 315–24. http://dx.doi.org/10.7202/014418ar.
Texto completoCyr, Claude. "LES INTOXICATIONS SÉVÈRES À L’ALCOOL CHEZ LES JEUNES". Paediatrics & Child Health 23, suppl_1 (18 de mayo de 2018): e1-e1. http://dx.doi.org/10.1093/pch/pxy054.001.
Texto completoTesis sobre el tema "Prédiction de pics"
Chen, Yuyao. "Contribution of machine learning to the prediction of building energy consumption". Electronic Thesis or Diss., Lyon, INSA, 2023. http://www.theses.fr/2023ISAL0119.
Texto completoThe ongoing energy transition, pivotal to mitigate global warming, could significantly benefit from advances in building energy consumption prediction. With the advent of big data, data-driven models are increasingly effective in forecasting tasks and machine learning is probably the most efficient method to build such predictive models nowadays. In this work, we provide a comprehensive review of machine learning techniques for forecasting, regarding preprocessing as well as state-of-the-art models such as deep neural networks. Despite the achievements of state-of-art models, accurately predicting high-fluctuation electricity consumption still remains a challenge. To tackle this challenge, we propose to explore two paths: the utilization of soft-DTW loss functions and the inclusion of exogenous variables. By applying the soft-DTW loss function with a residual LSTM neural network on a real dataset, we observed significant improvements in capturing the patterns of high-fluctuation load series, especially in peak prediction. However, conventional error metrics prove insufficient in adequately measuring this ability. We therefore introduce confusion matrix analysis and two new error metrics: peak position error and peak load error based on the DTW algorithm. Our findings reveal that soft-DTW outperforms MSE and MAE loss functions with lower peak position and peak load error. We also incorporate soft-DTW loss function with MSE, MAE, and Time Distortion Index. The results show that combining the MSE loss function performs the best and helps alleviate the problem of overestimated and sharp peaks problems occured. By adding exogenous variables with soft-DTW loss functions, the inclusion of calendar variables generally enhances the model’s performance, particularly when these variables exhibit higher Pearson’s correlation coefficients with the target variable. However, when the correlation between the calendar variables and the historical load patterns is relatively low, their inclusion has a negative impact on the model’s performance. A similar relationship is observed with weather variables
Nguyen, Thi Thu Tam. "Learning techniques for the load forecasting of parcel pick-up points". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG034.
Texto completoPick-Up Points (PUP) represent an alternative delivery option for purchases from online retailers (Business-to-Customer, B2C) or online Customer-to-Customer (C2C) marketplaces. Parcels are delivered at a reduced cost to a PUP and wait until being picked up by customers or returned to the original warehouse if their sojourn time is over. When the chosen PUP is overloaded, the parcel may be refused and delivered to the next available PUP on the carrier tour. PUP load forecasting is an efficient method for the PUP management company (PMC) to better balance the load of each PUP and reduce the number of rerouted parcels. This thesis aims to describe the parcel flows in a PUP and to proposed models used to forecast the evolution of the load. For the PUP load associated with the B2C business, the parcel life-cycle has been taken into account in the forecasting process via models of the flow of parcel orders, the delivery delays, and the pick-up process. Model-driven and data-driven approaches are compared in terms of load-prediction accuracy. For the PUP load associated with the C2C business, the daily number of parcels dropped off with a given PUP as target is described by a Markov-Switching AutoRegressive model to account for the non-stationarity of the second-hand shopping activity. The life-cycle of each parcel is modeled by a Markov jump process. Model parameters are evaluated from previous parcel drop-off, delivery, and pick-up records. The probability mass function of the future load of a PUP is then evaluated using all information available on parcels with this PUP as target. In both cases, the proposed model-driven approaches give, for most of the cases, better forecasting performance, compared with the data-driven models, involving LSTM, Random forest, Holt-Winters, and SARIMA models, up to four days ahead in the B2C case and up to six days ahead in the C2C case. The first approach applied to the B2C parcel load yields an MAE of 3 parcels for the one-day ahead prediction and 8 parcels for the four-day ahead prediction. The second approach applied to the C2C parcel load yields an MAE of 5 parcels for the one-day ahead prediction and 8 parcels for the seven-day ahead prediction. These prediction horizons are consistent with the delivery delay associated with these parcels (1-3 days in the case of a B2C parcel and 4-5 days in the case of a C2C parcel). Future research directions aim at optimizing the prediction accuracy, especially in predicting future orders and studying a load-balancing approach to better share the load between PUPs