Índice
Literatura académica sobre el tema "Prédiction de phénotype"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Prédiction de phénotype".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Prédiction de phénotype"
PEYRAUD, J. L. y F. PHOCAS. "Dossier " Phénotypage des animaux d'élevage "". INRAE Productions Animales 27, n.º 3 (25 de agosto de 2014): 179–1890. http://dx.doi.org/10.20870/productions-animales.2014.27.3.3065.
Texto completoRicard, Anne. "Les marqueurs génétiques pour les aptitudes". Le Nouveau Praticien Vétérinaire équine 17, n.º 59 (2023): 20–25. http://dx.doi.org/10.1051/npvequi/2024010.
Texto completoPHOCAS, F., J. AGABRIEL, M. DUPONT-NIVET, J. GEURDEN, F. MÉDALE, S. MIGNON-GRASTEAU, H. GILBERT y J. Y. DOURMAD. "Le phénotypage de l’efficacité alimentaire et de ses composantes, une nécessité pour accroître l’efficience des productions animales". INRAE Productions Animales 27, n.º 3 (28 de agosto de 2014): 235–48. http://dx.doi.org/10.20870/productions-animales.2014.27.3.3070.
Texto completoGroheux, D., M. Hatt, A. Martineau, D. Visvikis, S. Giacchetti, P. De Cremoux, J. Lehmann-Che, M. Espie, C. Cheze-Le-rest y E. Hindie. "Prédiction de la réponse a la chimiothérapie néoadjuvante du cancer du sein de phénotype luminal : apport du volume glycolytique total". Médecine Nucléaire 37, n.º 5 (mayo de 2013): 137. http://dx.doi.org/10.1016/j.mednuc.2013.03.011.
Texto completoBougeard, Alan, Rose Guay Hottin1, Valérie Houde, Thierry Jean, Thibault Piront, Stéphane Potvin, Paquito Bernard, Valérie Tourjman, Luigi De Benedictis y Pierre Orban. "Le phénotypage digital pour une pratique clinique en santé mentale mieux informée". Santé mentale au Québec 46, n.º 1 (21 de septiembre de 2021): 135–56. http://dx.doi.org/10.7202/1081513ar.
Texto completoPHOCAS, F., J. BOBE, L. BODIN, B. CHARLEY, J. Y. DOURMAD, N. C. FRIGGENS, J. F. Hocquette et al. "Des animaux plus robustes : un enjeu majeur pour le développement durable des productions animales nécessitant l’essor du phénotypage fin et à haut débit". INRAE Productions Animales 27, n.º 3 (28 de agosto de 2014): 181–94. http://dx.doi.org/10.20870/productions-animales.2014.27.3.3066.
Texto completoDrapier, D. "Imagerie cérébrale en psychiatrie : applications cliniques actuelles et défis à venir". European Psychiatry 29, S3 (noviembre de 2014): 553. http://dx.doi.org/10.1016/j.eurpsy.2014.09.352.
Texto completoLE BAIL, P. Y., J. BUGEON, O. DAMERON, A. FATET, W. GOLIK, J. F. HOCQUETTE, C. HURTAUD et al. "Un langage de référence pour le phénotypage des animaux d’élevage : l’ontologie ATOL". INRAE Productions Animales 27, n.º 3 (28 de agosto de 2014): 195–208. http://dx.doi.org/10.20870/productions-animales.2014.27.3.3067.
Texto completoLE BIHAN-DUVAL, E., R. TALON, M. BROCHARD, J. GAUTRON, F. LEFÈVRE, C. LARZUL, E. BAÉZA y J. F. HOCQUETTE. "Le phénotypage de la qualité des produits animaux : enjeux et innovations." INRAE Productions Animales 27, n.º 3 (28 de agosto de 2014): 223–34. http://dx.doi.org/10.20870/productions-animales.2014.27.3.3069.
Texto completoGroheux, D., M. Majdoub, P. De Cremoux, E. Hindie, A. Martineau, P. Merlet, D. Visvikis, M. Resche-Rigon, M. Hatt y M. Espie. "Prédiction précoce de la chimiothérapie néoadjuvante du cancer du sein : détermination de critères optimaux pour les principaux phénotypes". Médecine Nucléaire 39, n.º 3 (mayo de 2015): 258. http://dx.doi.org/10.1016/j.mednuc.2015.03.178.
Texto completoTesis sobre el tema "Prédiction de phénotype"
Carré, Clément. "Prédiction génétique des caractères complexes". Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2912/.
Texto completoThe objective of this thesis is the development of statistical approaches for genetic prediction of complex traits. Four approaches are developed, adapted to different genetic contexts. Under additivity, a linear model combining transmission and SNP marker data is useful when the SNP do not capture all genetic effects influencing the trait. Under nonlinear genetic effects, a kernel regression method (Nadaraya-Watson) yields more precise predictions than the standard method (BLUP). After the comparison of parametric vs. Nonparametric methods, we propose to combine methods : a statistical aggregation method is efficient and robust to mix several predictors. Finally, an original algorithm of random projections of linear models allows rapid recovery of parsimonious model parameters
Garnier, Nicolas. "Mise en place d'un environnement bioinformatique d'évaluation et de prédiction de l'impact de mutations sur le phénotype de pathologies humaines". Lyon 1, 2008. http://www.theses.fr/2008LYO10165.
Texto completoThis thesis work focuses on high throughput applications of bioinformatics methodologies to study genotype/phenotype correlations in the context of the MS2PH project (“from Structural Mutation to Human Pathologies Phenotypes”). We first concentrated on the generation of homology models at high throughput level with Modeome3D generation and managment system (http://modeome3dpbil. Ibcp. Fr). Next, the characterization of the mutations in a functional and structural context was addressed by the development of MAGOS (http://pigpbil. Ibcp. Fr/magos/). Finally, we exploited the integrative capabilities of MAGOS, as well as the power of the Decrypthon computation grid to develop MS2PHdb (http://ms2phdbpbil. Ibcp. Fr/), a database dedicated to proteins involved in human monogenic diseases, which also integrates phenotypic data using the ability of modeome3D system. Finally a prediction method using neural network and SVM has been done to predict impact or not of mutation on phenotype
Humbert, Olivier. "Imagerie TEP au 18F-FDG du cancer du sein : étude du comportement métabolique des différents phénotypes tumoraux et prédiction de la réponse tumorale à la chimiothérapie néoadjuvante". Thesis, Dijon, 2015. http://www.theses.fr/2015DIJOS024/document.
Texto completoPositron Emission Tomography (PET) with 18Fluoro-deoxyglucose (18F-FDG) is the reference imaging examination for in-vivo quantification of the glucidic metabolism of tumour cells. It allows for the monitoring of tumour metabolic changes during chemotherapy. Breast cancer comprises several distinct genomic entities with different biological characteristics and clinical behaviours, leading to different tailored treatments. The aim of this doctoral thesis was to evaluate the relationship between the different biological entities of breast cancer and the tumour metabolic behaviour during neoadjuvant chemotherapy. We have also retrieved, among the various metabolic parameters on PET images, the most reliable ones to predict, as early as after the first neoadjuvant cycle, the final tumour histologic response and patient’s outcome. We have also evaluated early changes in tumour blood flow, using a tumour first-pass model derived from an dynamic 18F-FDG-PET acquisition.The first article presented in this thesis has underlined the strong correlation between breast cancer subtypes, and the tumour metabolic behaviour during chemotherapy. The following three articles have demonstrated that tumour metabolic changes after the first neoadjuvant cycle can predict the final histologic complete response at the end of the treatment, both in triple-negative and HER2 positive tumours. Concerning the luminal/HER2 subtype, the early metabolic response mainly predicts patient’s outcome.These results should lead, in the near future, to PET-guided neoadjuvant strategies, in order to adapt the neoadjuvant treatment in poor-responding women. Such a strategy should lead to enhanced personalized medicine
Bourgeais, Victoria. "Interprétation de l'apprentissage profond pour la prédiction de phénotypes à partir de données d'expression de gènes". Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG069.
Texto completoDeep learning has been a significant advance in artificial intelligence in recent years. Its main domains of interest are image analysis and natural language processing. One of the major future challenges of this approach is its application to precision medicine. This new form of medicine will make it possible to personalize each stage of a patient's care pathway according to his or her characteristics, in particular molecular characteristics such as gene expression data that inform about the cellular state of a patient. However, deep learning models are considered black boxes as their predictions are not accompanied by an explanation, limiting their use in clinics. The General Data Protection Regulation (GDPR), adopted recently by the European Union, imposes that the machine learning algorithms must be able to explain their decisions to the users. Thus, there is a real need to make neural networks more interpretable, and this is particularly true in the medical field for several reasons. Understanding why a phenotype has been predicted is necessary to ensure that the prediction is based on reliable representations of the patients rather than on irrelevant artifacts present in the training data. Regardless of the model's effectiveness, this will affect any end user's decisions and confidence in the model. Finally, a neural network performing well for the prediction of a certain phenotype may have identified a signature in the data that could open up new research avenues.In the current state of the art, two general approaches exist for interpreting these black-boxes: creating inherently interpretable models or using a third-party method dedicated to the interpretation of the trained neural network. Whatever approach is chosen, the explanation provided generally consists of identifying the important input variables and neurons for the prediction. However, in the context of phenotype prediction from gene expression, these approaches generally do not provide an understandable explanation, as these data are not directly comprehensible by humans. Therefore, we propose novel and original deep learning methods, interpretable by design. The architecture of these methods is defined from one or several knowledge databases. A neuron represents a biological object, and the connections between neurons correspond to the relations between biological objects. Three methods have been developed, listed below in chronological order.Deep GONet is based on a multilayer perceptron constrained by a biological knowledge database, the Gene Ontology (GO), through an adapted regularization term. The explanations of the predictions are provided by a posteriori interpretation method.GraphGONet takes advantage of both a multilayer perceptron and a graph neural network to deal with the semantic richness of GO knowledge. This model has the capacity to generate explanations automatically.BioHAN is only established on a graph neural network and can easily integrate different knowledge databases and their semantics. Interpretation is facilitated by the use of an attention mechanism, enabling the model to focus on the most informative neurons.These methods have been evaluated on diagnostic tasks using real gene expression datasets and have shown competitiveness with state-of-the-art machine learning methods. Our models provide intelligible explanations composed of the most contributive neurons and their associated biological concepts. This feature allows experts to use our tools in a medical setting
Queyrel, Maxence. "End-to-End Deep Learning and Subgroup discovery approaches to learn from metagenomics data". Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS470.
Texto completoTechnological advances have made high-resolution sequencing of genetic material possible at ever lower cost. In this context, the human microbiome (considered as our second "genome") has demonstrated its great capacity to stratify various human diseases. As a "super-integrator" of patient status, the gut microbiota is set to play a key role in precision medicine. Omics biomarkers identification has become a major goal of metagenomics processing, as it allows us to understand the microbial diversities that induce the patient stratification. There remain many challenges associated with mainstream metagenomics pipelines that are both time consuming and not stand-alone. This prevents metagenomics from being used as "point-of-care" solutions, especially in resource-limited or remote locations. Indeed, state-of-the-art approaches to learning from metagenomics data still relies on tedious and computationally heavy projections of the sequence data against large genomic reference catalogs. In this thesis, we address this issue by training deep neural networks directly from raw sequencing data building an embedding of metagenomes called Metagenome2Vec. We also explore subgroup discovery algorithms that we adapt to build a classifier with a reject option which then delegates samples, not belonging to any subgroup, to a supervised algorithm. Several datasets are used in the experiments to discriminate patients based on different diseases (colorectal cancer, cirrhosis, diabetes, obesity) from the NCBI public repository. Our evaluations show that our two methods reach high performance comparable to the state-of-the-art, while being respectively stand-alone and interpretable
Frouin, Arthur. "Lien entre héritabilité et prédiction de phénotypes complexes chez l’humain : une approche du problème par la régression ridge sur des données de population". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASL027.
Texto completoThis thesis studies the contribution of machine learning methods for the prediction of complex and heritable human phenotypes, from population genetic data. Indeed, genome-wide association studies (GWAS) generally only explain a small fraction of the heritability observed in family data. However, heritability can be approximated on population data by genomic heritability, which estimates the phenotypic variance explained by the set of single nucleotide polymorphisms (SNPs) of the genome using mixed models. This thesis therefore approaches heritability from a machine learning perspective and examines the close link between mixed models and ridge regression.Our contribution is twofold. First, we propose to estimate genomic heritability using a predictive approach via ridge regression and generalized cross validation (GCV). Second, we derive simple formulas that express the precision of the ridge regression prediction as a function of the size of the population and the total number of SNPs, showing that a high heritability does not necessarily imply an accurate prediction. Heritability estimation via GCV and prediction precision formulas are validated using simulated data and real data from UK Biobank. The last part of the thesis presents results on qualitative phenotypes. These results allow a better understanding of the biases of the heritability estimation methods