Literatura académica sobre el tema "Preclinical cancer models"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Preclinical cancer models".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Preclinical cancer models"
KARNEZIS, ANTHONY N. y KATHLEEN R. CHO. "Preclinical Models of Ovarian Cancer". Clinical Obstetrics and Gynecology 60, n.º 4 (diciembre de 2017): 789–800. http://dx.doi.org/10.1097/grf.0000000000000312.
Texto completoSedlack, Andrew J. H., Samual J. Hatfield, Suresh Kumar, Yasuhiro Arakawa, Nitin Roper, Nai-Yun Sun, Naris Nilubol et al. "Preclinical Models of Adrenocortical Cancer". Cancers 15, n.º 11 (23 de mayo de 2023): 2873. http://dx.doi.org/10.3390/cancers15112873.
Texto completoSewduth, Raj N. y Konstantina Georgelou. "Relevance of Carcinogen-Induced Preclinical Cancer Models". Journal of Xenobiotics 14, n.º 1 (5 de enero de 2024): 96–109. http://dx.doi.org/10.3390/jox14010006.
Texto completoJeon, Min Ji y Bryan R. Haugen. "Preclinical Models of Follicular Cell-Derived Thyroid Cancer: An Overview from Cancer Cell Lines to Mouse Models". Endocrinology and Metabolism 37, n.º 6 (31 de diciembre de 2022): 830–38. http://dx.doi.org/10.3803/enm.2022.1636.
Texto completoMcIntyre, Rebecca E., Simon J. A. Buczacki, Mark J. Arends y David J. Adams. "Mouse models of colorectal cancer as preclinical models". BioEssays 37, n.º 8 (26 de junio de 2015): 909–20. http://dx.doi.org/10.1002/bies.201500032.
Texto completoZhu, Shaoming, Zheng Zhu, Ai-Hong Ma, Guru P. Sonpavde, Fan Cheng y Chong-xian Pan. "Preclinical Models for Bladder Cancer Research". Hematology/Oncology Clinics of North America 35, n.º 3 (junio de 2021): 613–32. http://dx.doi.org/10.1016/j.hoc.2021.02.007.
Texto completoRodriguez, Cynthia, Paloma Valenzuela, Natzidielly Lerma y Giulio Francia. "Preclinical Models to Study Breast Cancer". Clinical Cancer Drugs 1, n.º 2 (31 de mayo de 2014): 90–99. http://dx.doi.org/10.2174/2212697x113026660005.
Texto completoKim, Minlee, Andrea L. Kasinski y Frank J. Slack. "MicroRNA therapeutics in preclinical cancer models". Lancet Oncology 12, n.º 4 (abril de 2011): 319–21. http://dx.doi.org/10.1016/s1470-2045(11)70067-5.
Texto completoJoshi, Kirtan, Tejas Katam, Akshata Hegde, Jianlin Cheng, Randall S. Prather, Kristin Whitworth, Kevin Wells et al. "Pigs: Large Animal Preclinical Cancer Models". World Journal of Oncology 15, n.º 2 (abril de 2024): 149–68. http://dx.doi.org/10.14740/wjon1763.
Texto completoSedlack, Andrew J. H., Kimia Saleh-Anaraki, Suresh Kumar, Po Hien Ear, Kate E. Lines, Nitin Roper, Karel Pacak et al. "Preclinical Models of Neuroendocrine Neoplasia". Cancers 14, n.º 22 (17 de noviembre de 2022): 5646. http://dx.doi.org/10.3390/cancers14225646.
Texto completoTesis sobre el tema "Preclinical cancer models"
Chaffee, Beth K. "Preclinical Modeling of Musculoskeletal Cancer". The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1376844544.
Texto completoDelgado, San Martin Juan A. "Mathematical models for preclinical heterogeneous cancers". Thesis, University of Aberdeen, 2016. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=230139.
Texto completoPEDERZOLI, FILIPPO. "Microbiome and bladder cancer". Doctoral thesis, Università Vita-Salute San Raffaele, 2021. http://hdl.handle.net/20.500.11768/121778.
Texto completoThe microbiome has gained increasing momentum in cancer research, as it has become clear that microorganisms residing within our body are involved in mediating the cellular and tissue metabolism in health and disease. In bladder cancer research, there are different microbial communities that may mediate cancer pathobiology and response to therapy: the gut microbiome, the urinary microbiome, the urothelium-bound microbiome. These bacterial communities may mediate the processes of carcinogenesis or recurrence, modify the response to local intravesical therapies or influence the activity of systemic anticancer protocols. Based on these premises, my research project aimed to unveil the urinary and urothelium-bound microbiome in therapy-naïve bladder cancer patients, describing the differently enriched bacterial communities using a sex-based stratification. Compared to healthy controls, I found that the urine of men affected by bladder cancer were enriched in the order Opitutales and subordinate family Opitutaceae, together with the isolated class Acidobacteria-6, while in female patients I found enriched the genus Klebsiella. Notably, the bladder cancer tissue was enriched in the genus Burkholderia in both men and women, when compared to non-neoplastic, paired urothelium biopsies. Then, I also characterized the gut microbiome of bladder cancer patients undergoing neoadjuvant pembrolizumab to understand if the intestinal bacteria may influence the immune-mediated anticancer activity. In this set, I have reported that antibiotic therapy has a negative effect on immunotherapy efficacy. Second, the gut microbiome of patients not responding to neoadjuvant pembrolizumab was characterized by a higher abundance of Ruminococcus bromii, while patients who showed a response were enriched in the genus Sutterella. Lastly, I started the implementation of in vivo and in vitro systems to test the mechanistic role of the bacteria identified in human samples. This thesis work reported innovative data on the role of different microbial communities (urinary/urothelium-bound/fecal) in bladder cancer and bladder cancer therapy, and provided novel in vivo and in vitro models to validate those finding and uncover the complex microbiome-host cells crosstalk in bladder cancer patients.
Benoni, Alexandra. "Oxytocin, as a hormonal treatment for cachexia in preclinical models". Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS290.pdf.
Texto completoOxytocin (OT), a neurohypophyseal hormone, affects the central nervous system (CNS), uterus, and mammary glands. OT has recently been shown to promote myogenic differentiation and muscle regeneration. Indeed, OT levels decrease with age and its exogenous administration counteracts sarcopenia in aged mice. Cachexia is a syndrome characterized by severe muscle wasting. We noticed lower levels of circulating OT in cachectic cancer patients. To prove that OT inhibits tumor-derived factors, we first performed in vitro experiments showing that the inhibition of myogenic differentiation exerted by C26 tumor-conditioned medium (CM) is reversed by co-treatment with OT. We confirmed in vivo that OT accelerated muscle regeneration following focal injury, inhibited by TNF. In a preclinical model, OT restored skeletal muscle mass, fiber size, and inhibited protein catabolism. We focused on the effects of tumor and OT on protein metabolism, specifically labeling newly synthesized proteins. In myoblasts co-cultured with tumor cells, we observed a decrease in newly synthesized proteins, counteracted by OT treatment. We show for the first time that OT is effective in counteracting the effects of tumor-derived factors
MINOLI, LUCIA. "TUMOR MICROENVIRONMENT IN EXPERIMENTAL PRECLINICAL MOUSE MODELS OF HUMAN CANCER: MORPHOLOGICAL APPROACH". Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/704551.
Texto completoCasagrande, Naike. "Anticancer activity of liposomal cisplatin in preclinical models of cervical and ovarian cancer". Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423785.
Texto completoIl cisplatino è uno dei farmaci più utilizzati per il trattamento del carcinoma della cervice e dell‟ovaio. Purtroppo il suo utilizzo in chemioterapia presenta importanti limitazioni, quali l‟elevata tossicità e l‟insorgenza di resistenza intrinseca o acquisita. Il lipoplatino è una formulazione liposomiale del cisplatino (Regulon, Inc., Mt. View, U.S.A), sintetizzata allo scopo di ridurre la tossicità sistemica del cisplatino e contemporaneamente di incrementarne l‟accumulo nel tumore primario e nelle metastasi. Studi clinici di Fase II e III sono stati effettuati in diversi tumori ma non nel carcinoma della cervice uterina e dell‟ovaio. In questo lavoro è stata analizzata l‟attività antitumorale del lipoplatino in modelli preclinici di carcinoma della cervice uterina e carcinoma ovarico sensibili e resistenti al cisplatino. L‟attività antiproliferativa del lipoplatino è stata studiata nella linea cellulare derivata da carcinoma della cervice uterina ME-180 e nel suo clone resistente al cisplatino R-ME-180, come pure in un pannello di linee cellulari derivanti da carcinoma ovarico: A2780, il suo clone cisplatino-resistente A2780cis, MDAH, OVACR3, OVCAR5, SKOV3, e TOV21G. Il cisplatino è stato introdotto nello studio come farmaco di riferimento. I risultati hanno dimostrato che il lipoplatino esibisce una potente attività antitumorale in tutte le linee cellulari analizzate, incluse le cisplatino-resistenti, dimostrando assenza di cross-resistenza con il farmaco cisplatino. Il lipoplatino induce apoptosi, valutata tramite l‟esternalizzazione della fosfatidilserina (marcatore precoce di apoptosi) e la frammentazione del DNA. In particolare, il lipoplatino attiva la via mitocondriale dell'apoptosi, come dimostrato dalla depolarizzazione della membrana mitocondriale, il rilascio del citocromo-c , la diminuzione dell‟espressione della proteina anti-apoptotica Bcl-2, l‟incremento dell‟espressione della molecola pro-apoptotica Bax e l‟attivazione delle caspasi 9 e 3. Nelle stesse condizioni sperimentali il cisplatino attiva l‟apoptosi soltanto in cellule sensibili al cisplatino. L‟enzima tioredoxina reduttasi (TrxR) svolge una funzione ossidoriduttiva proteggendo la cellula da stress ossidativo. Un elevato livello dell‟enzima si osserva in diversi tipi di tumore e sembra essere associato alla resistenza al cisplatino. I miei studi hanno dimostrato che il lipoplatino, ma non il cisplatino, inibisce l‟attività enzimatica della TrxR incrementando la produzione di radicali liberi dell‟ossigeno (ROS). Inoltre il lipoplatino riduce l‟espressione del recettore del fattore di crescita dell‟epidermide (EGFR), un recettore di membrana over-espresso nei tumori, coinvolto nella proliferazione e nella migrazione delle cellule tumorali. Anche la migrazione e l‟invasione cellulare vengono ridotte dal trattamento con lipoplatino. Molto spesso in chemioterapia si somministra una combinazione di più farmaci (polichemioterapia) per ottenere un effetto additivo e/o sinergico. Si è quindi combinato il lipoplatino con i chemioterapici più utilizzati nel trattamento del carcinoma ovarico. La combinazione del lipoplatino con i farmaci doxorubicina e abraxane dimostra effetti sinergici, mentre la combinazione con docetaxel e paclitaxel è meno efficace con effetti quasi additivi. Nell‟ascite di pazienti affette da carcinoma ovarico si possono ritrovare aggregati multicellulari, o sferoidi, che sembrano essere coinvolti nella progressione tumorale. Gli sferoidi rappresentano un valido modello sperimentale con caratteristiche biologiche e molecolari simili ai tumori solidi, tra queste la presenza di cellule staminali cancerose, ossia cellule con grandi capacità rigenerative e di resistenza alle terapie in grado di alimentare la crescita del tumore. Il trattamento con lipoplatino diminuisce in maniera dose-dipendente i marcatori di staminalità e inibisce la formazione di sferoidi in entrambi i modelli sperimentali. Inoltre riduce la dimensione, la vitalità e la disseminazione di sferoidi di carcinoma ovarico. Infine il lipoplatino diminuisce la crescita di tumori xenografi derivanti da cellule di carcinoma della cervice uterina e dell‟ovaio con ridotta tossicità. Anche in seguito all‟interruzione del trattamento i tumori non riprendono la crescita. Concludendo il lipoplatino dimostra un‟attività antitumorale in colture cellulari tradizionali, in colture tridimensionali o sferoidi ed in vivo, sia di cellule derivanti da carcinoma della cervice uterina cisplatino-resistenti che da carcinoma ovarico. Questi risultati molto promettenti suggeriscono un potenziale utilizzo di questa formulazione liposomiale di cisplatino per il trattamento di pazienti affette dalle suddette patologie.
García, Parra Jetzabel 1983. "PARP1 expression in breast cancer and effects of its inhibition in preclinical models". Doctoral thesis, Universitat Pompeu Fabra, 2012. http://hdl.handle.net/10803/84173.
Texto completoEl càncer de mama és la principal causa de mort per càncer en dones. La millora dels tractaments i la detecció precoç estan reduint la taxa de mort, però segueix sent elevada. Identificar noves dianes per predir la resposta a tractaments és clau per millorar les teràpies contra aquest càncer i la supervivència. Els inhibidors de PARP van aparèixer com una teràpia prometedora, particularment en càncers BRCA-mutants, però, cal dur a terme més estudis preclínics i translacionals per fomentar un desenvolupament racional d’aquesta teràpia en càncer de mama. Aquest treball descriu l’expressió de PARP1 en mostres de tumors mamaris i caracteritza els efectes de la seva inhibició a models preclínics. Vam observar que la sobreexpressió nuclear de la proteïna PARP1 fou associada amb: la transformació maligna; mal pronòstic en càncer de mama; i fou més freqüent al subtipus triple-negatiu, però també es va detectar en un subgrup de càncers de mama receptors d’estrogen positius i HER2 positius. En models preclínics, PARP1 va exercir rols diferents als diferents subtipus de càncer de mama. Per altra banda, vam descriure que olaparib (inhibidor de PARP) té efectes antitumorals en els diversos subtipus, i combinat amb trastuzumab (anticòs anti-HER2) potencia els efectes antitumorals d’aquesta teràpia.
Jawad, Dhafer Sahib. "Chemopreventive effect of resveratrol in preclinical colorectal cancer models with different genetic drivers". Thesis, University of Leicester, 2017. http://hdl.handle.net/2381/40308.
Texto completoGronbach, Leonie [Verfasser]. "Organotypic head and neck cancer models for advanced preclinical drug testing / Leonie Gronbach". Berlin : Freie Universität Berlin, 2021. http://d-nb.info/1230407316/34.
Texto completoChen, Liu Qi. "Development and Application of AcidoCEST MRI for Evaluating Tumor Acidosis in Pre-Clinical Cancer Models". Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/323450.
Texto completoLibros sobre el tema "Preclinical cancer models"
Tuli, Hardeep Singh, ed. Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7586-0.
Texto completoA, Jones Peter y Michael Lübbert. Epigenetic Therapy of Cancer: Preclinical Models and Treatment Approaches. Springer London, Limited, 2013.
Buscar texto completoA, Jones Peter y Michael Lübbert. Epigenetic Therapy of Cancer: Preclinical Models and Treatment Approaches. Springer, 2016.
Buscar texto completoA, Jones Peter y Michael Lübbert. Epigenetic Therapy of Cancer: Preclinical Models and Treatment Approaches. Springer, 2014.
Buscar texto completoTuli, Hardeep Singh. Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models. Springer Singapore Pte. Limited, 2020.
Buscar texto completoTuli, Hardeep Singh. Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models. Springer Singapore Pte. Limited, 2021.
Buscar texto completoFiebig, H. H. Revelance Of Tumor Models For Anticancer Drug Development (CONTRIBUTIONS TO ONCOLOGY). Editado por H. H. Fiebig. Karger, 1999.
Buscar texto completoLee, Gregory. Epitope/Peptide-Based Monoclonal Antibodies for Immunotherapy of Ovarian Cancer. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190248208.003.0007.
Texto completoPowell, Craig M. PTEN and Autism With Macrocepaly. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199744312.003.0010.
Texto completoCapítulos de libros sobre el tema "Preclinical cancer models"
Mika, Joanna, Wioletta Makuch y Barbara Przewlocka. "Preclinical Cancer Pain Models". En Cancer Pain, 71–93. London: Springer London, 2013. http://dx.doi.org/10.1007/978-0-85729-230-8_6.
Texto completoCheng, Menglin y Kristine Glunde. "Magnetic Resonance Spectroscopy Studies of Mouse Models of Cancer". En Preclinical MRI, 331–45. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7531-0_20.
Texto completoTeicher, Beverly A. "Preclinical Tumor Response End Points". En Tumor Models in Cancer Research, 571–605. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-968-0_23.
Texto completoMorton, Christopher L. y Peter J. Houghton. "The Pediatric Preclinical Testing Program". En Tumor Models in Cancer Research, 195–213. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-968-0_8.
Texto completoBoss, Mary-Keara, Gregory M. Palmer y Mark W. Dewhirst. "Imaging the Hypoxic Tumor Microenvironment in Preclinical Models". En Hypoxia and Cancer, 157–78. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9167-5_7.
Texto completoGerner, Eugene W., Natalia A. Ignatenko y David G. Besselsen. "Preclinical Models for Chemoprevention of Colon Cancer". En Tumor Prevention and Genetics, 58–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55647-0_6.
Texto completoYang, Ying, Wen-Jian Meng y Zi-Qiang Wang. "Preclinical Models in Colorectal Cancer Drug Discovery". En Handbook of Animal Models and its Uses in Cancer Research, 1097–106. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-3824-5_56.
Texto completoYang, Ying, Wen-Jian Meng y Zi-Qiang Wang. "Preclinical Models in Colorectal Cancer Drug Discovery". En Handbook of Animal Models and its Uses in Cancer Research, 1–10. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1282-5_56-1.
Texto completoJuvekar, Aarti S., Joyce Thompson, Clinton F. Stewart y Peter J. Houghton. "Preclinical Models for Evaluating Topoisomerase I-Targeted Drugs". En Camptothecins in Cancer Therapy, 127–51. Totowa, NJ: Humana Press, 2005. http://dx.doi.org/10.1385/1-59259-866-8:127.
Texto completoCarbajal, Eletha y Eric C. Holland. "Mouse Models in Preclinical Drug Development: Applications to CNS Models". En Genetically Engineered Mice for Cancer Research, 549–67. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-69805-2_26.
Texto completoActas de conferencias sobre el tema "Preclinical cancer models"
Bouvet, Michael y Robert M. Hoffman. "Preclinical fluorescent mouse models of pancreatic cancer". En Biomedical Optics (BiOS) 2007, editado por Samuel Achilefu, Darryl J. Bornhop, Ramesh Raghavachari, Alexander P. Savitsky y Rebekka M. Wachter. SPIE, 2007. http://dx.doi.org/10.1117/12.708060.
Texto completoDuchamp, Olivier, Gael Krysa, Robin Artus, Hugo Quillery, Maxime Ramelet, Valerie Boullay, Laure Levenez et al. "Abstract 5638: Liver preclinical models - acute, chronic and cancer models". En Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-5638.
Texto completoRosen, JM. "Abstract DL-1: Leveraging Preclinical Models of Breast Cancer". En Abstracts: 2017 San Antonio Breast Cancer Symposium; December 5-9, 2017; San Antonio, Texas. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.sabcs17-dl-1.
Texto completoBamberg, C., I. Witzel, A. Wöckel, S. Seiler, S. Loibl, K. Thiele, A. Diemert y PC Arck. "Breast cancer during pregnancy: from preclinical models to clinical studies". En 64. Kongress der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe e. V. Georg Thieme Verlag, 2022. http://dx.doi.org/10.1055/s-0042-1756750.
Texto completoNguyen, Holly M., Colm Morrissey, Peter S. Nelson, Xiaotun Zhang, Paul H. Lange, Robert L. Vessella y Eva Corey. "Abstract 1214: Preclinical models of prostate cancer: New patient-derived xenografts for preclinical studies and evaluation of prostate cancer biology". En Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-1214.
Texto completoKHOO, Bee Luan y Jing Zhang. "Anti-inflammatory combinatorial therapy to enhance killing efficacy with patient-derived preclinical models". En The 1st International Electronic Conference on Cancers: Exploiting Cancer Vulnerability by Targeting the DNA Damage Response. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/iecc2021-09204.
Texto completoTrachet, Erin E., Sumithra Urs, Alden Wong, Scott Wise y Maryland Rosenfeld Franklin. "Abstract 1928: Radiation response in preclinical orthotopic models of brain cancer". En Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-1928.
Texto completoTrachet, Erin E., Sumithra Urs, Alden Wong, Scott Wise y Maryland Rosenfeld Franklin. "Abstract 1928: Radiation response in preclinical orthotopic models of brain cancer". En Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-1928.
Texto completoShannon, Kevin. "Abstract IA14: Preclinical models for targeting oncogenic Ras signaling in cancer." En Abstracts: AACR Special Conference on Hematologic Malignancies: Translating Discoveries to Novel Therapies; September 20-23, 2014; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1557-3265.hemmal14-ia14.
Texto completoFreed-Pastor, William A., Laurens Lambert, Ana P. Garcia, George Eng, Omer Yilmaz y Tyler Jacks. "Abstract PR14: Preclinical models to dissect immune escape in pancreatic cancer". En Abstracts: AACR Special Conference on Pancreatic Cancer: Advances in Science and Clinical Care; September 6-9, 2019; Boston, MA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.panca19-pr14.
Texto completoInformes sobre el tema "Preclinical cancer models"
Gregerson, Karen A. Human-Compatible Animal Models for Preclinical Research on Hormones in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2012. http://dx.doi.org/10.21236/ada574629.
Texto completoJiang, Weiqin y Zongjian Zhu. Exploitation of Nontraditional Crop, Yacon, in Breast Cancer Prevention Using Preclinical Rat Model. Fort Belvoir, VA: Defense Technical Information Center, julio de 2010. http://dx.doi.org/10.21236/ada541863.
Texto completoAbate-Shen, Corry. Preclinical Studies of Signaling Pathways in a Mutant Mouse Model of Hormone-Refractory Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2011. http://dx.doi.org/10.21236/ada549157.
Texto completoKumar, Aishani, Thendral Yalini y Sunil Kumar C. Unlocking Cellular Control: The Promise of PROTACs in Disease Intervention. Science Reviews - Biology, mayo de 2024. http://dx.doi.org/10.57098/scirevs.biology.3.2.1.
Texto completo