Literatura académica sobre el tema "Precast reinforced concrete structures"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Precast reinforced concrete structures".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Precast reinforced concrete structures"
Nakata, Shinsuke. "Present Situation of Precast Reinforced Concrete Structures". Concrete Journal 32, n.º 5 (1994): 5–12. http://dx.doi.org/10.3151/coj1975.32.5_5.
Texto completoBOB, Corneliu, Andras LEIDAL y Liana BOB. "Reinforced Concrete Precast Structures with Rigid Connections". IABSE Congress Report 17, n.º 7 (1 de enero de 2008): 380–81. http://dx.doi.org/10.2749/222137908796293073.
Texto completoTho, Vu Dinh, Elena Anatolyevna Korol, Nikolai Ivanovich Vatin y Hoang Minh Duc. "The Stress–Strain State of Three-Layer Precast Flexural Concrete Enclosure Structures with the Contact Interlayers". Buildings 11, n.º 3 (1 de marzo de 2021): 88. http://dx.doi.org/10.3390/buildings11030088.
Texto completoJagtap, Siddhant Millind, Shailesh Kalidas Rathod, Rohit Umesh Jadhav, Prathamesh Nitin Patil, Atharva Shashikant Patil, Ashwini M. Kadam y P. G. Chavan. "Fibre Mesh in Reinforced Slabs". International Journal for Research in Applied Science and Engineering Technology 10, n.º 5 (31 de mayo de 2022): 3539–40. http://dx.doi.org/10.22214/ijraset.2022.42986.
Texto completoPolák, Aleš. "Experimental Verification of Demountable Precast Column System". Applied Mechanics and Materials 827 (febrero de 2016): 259–62. http://dx.doi.org/10.4028/www.scientific.net/amm.827.259.
Texto completoJoo, Sanghoon. "Structural Performance of Precast Concrete Arch with Reinforced Joint". Journal of the Korean Society of Civil Engineers 34, n.º 1 (2014): 29. http://dx.doi.org/10.12652/ksce.2014.34.1.0029.
Texto completoLiu, Hongtao, Qiushi Yan y Xiuli Du. "Seismic performance comparison between precast beam joints and cast-in-place beam joints". Advances in Structural Engineering 20, n.º 9 (20 de octubre de 2016): 1299–314. http://dx.doi.org/10.1177/1369433216674952.
Texto completoZhao, Dong Qi, Yi Jun Tang, Hui Li, Gui Feng Song y Feng Ling Guan. "The Application Research of Reinforced Concrete Multi-Ribbed Hollow Composite Slab in the Road Slab Culvert". Advanced Materials Research 368-373 (octubre de 2011): 307–11. http://dx.doi.org/10.4028/www.scientific.net/amr.368-373.307.
Texto completoMay, Sebastian, Oliver Steinbock, Harald Michler y Manfred Curbach. "Precast Slab Structures Made of Carbon Reinforced Concrete". Structures 18 (abril de 2019): 20–27. http://dx.doi.org/10.1016/j.istruc.2018.11.005.
Texto completoFolic, Radomir, Damir Zenunovic y Nesib Residbegovic. "Strength of connections in precast concrete structures". Facta universitatis - series: Architecture and Civil Engineering 9, n.º 2 (2011): 241–59. http://dx.doi.org/10.2298/fuace1102241f.
Texto completoTesis sobre el tema "Precast reinforced concrete structures"
Baran, Mehmet. "Precast Concrete Panel Reinforced Infill Walls For Seismic Strengthening Of Reinforced Concrete Framed Structures". Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606137/index.pdf.
Texto completoSrour, Mahdi. "Rocking system for seismic protection of reinforced concrete structures". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/3255/.
Texto completoSCHWARTZ, CHRIS J. "STRUCTURAL INVESTIGATION OF A FIBER REINFORCED PRECAST CONCRETE BOX CULVERT". University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1121016977.
Texto completoSusoy, Melih. "Seismic Strengthening Of Masonry Infilled Reinforced Concrete Frames With Precast Concrete Panels". Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605563/index.pdf.
Texto completoJúnior, Luiz Álvaro de Oliveira. "Ligação viga-pilar em elementos pré-moldados de concreto solidarizados por concreto reforçado com fibras de aço: análises estática e dinâmica". Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-13082012-083304/.
Texto completoIn the present work, steel fiber reinforced concrete, splicing bars and shear keys are used in order to develop a beam-column connection able to support cyclic and dynamic loadings and which can be used in precasting power houses structures of power plants. To achieve this goal, tests were carried out to characterize the materials, which showed increases of 34% in flexural tensile strength, 16% in compressive strength and 33% in toughness factor, confirming the beneficial effects of steel fibers in mechanical properties of the concrete. Then, tensile tests were carried out on rods, whose results suggested that a length of 15Ø can assure appropriate development of bond stresses through the splice; and shear tests, whose results showed that the beam-column connection resists to shear stresses of up to 0,77 MPa on shear key. After, cyclic tests were performed in two cruciform models in order to characterize the beam-column connection (one monolithic and the other precast concrete, which employed 1% steel fiber reinforced concrete in connection region, being the loading applied in five loading levels, each one in 10 cycles of loading and unloading. Results of these tests showed that precast beam-column connection presented 85% of the strength presented by the monolithic model and bending failure. Finally, dynamic tests were performed in cruciform models in three different situations (uncracked, cracked and after failure) for estimating the damping ratio, which was reduced by 31% after cycles. Computer simulations were performed to complement the research developed in this work. They showed acceptable representation of stiffness, but the strength of the model.
Mintz, Brandon L. "Development of a Precast Concrete Supertile Roofing System for the Mitigation of Extreme Wind Events". FIU Digital Commons, 2014. http://digitalcommons.fiu.edu/etd/1665.
Texto completoVitálišová, Barbora. "Návrh a posouzení vybraných částí ŽB nosné konstrukce". Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2019. http://www.nusl.cz/ntk/nusl-392081.
Texto completoKonečný, Michal. "Alternativní řešení montovaného železobetonového skeletu výrobní haly". Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2019. http://www.nusl.cz/ntk/nusl-391882.
Texto completoBellucio, Ellen Kellen. "Comportamento de chumbadores embutidos em concreto com fibras de aço para ligações viga-pilar de concreto pré-moldado". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-24052016-111520/.
Texto completoThis research deals with the study of the behavior of grouted dowels embedded in concrete with steel fibers. This study is important to understand and quantify the stiffness transmitted by this component in a semi-rigid connection of precast concrete structures. The objective is to study the mechanism of the dowel in the concrete with steel fibers and evaluate the mechanical behavior of a precast beam-column connection using this type of concrete on the corbels and in the dapped-end beam. In this research, an experimental program in the EESC Structures Laboratory was carried out, as well as a numerical analysis with the use of DIANA® software and a comparison with existing formulations to calculate these components. Nine models were experimentally tested to specifically evaluate the dowel resistant mechanism by varying the diameters of the bars, the declination and the percentage of steel fibers in concrete. Furthermore, an experimental test was performed in order to evaluate the behavior of the connector. The results indicate that for the dowels with concrete and steel fibers, the ultimate capacity of the connection occurs by failure of the connector (excessive deformation of the bars), while in conventional concrete this capability is associated with the rupture of the concrete and that the concrete with steel fibers decreases by 25% the deformability of the models. The grout has a significant impact on the ultimate capacity of the model, which may increase in less than 30%. In the analysis of the beam-column connection, it is possible to observe that the proposed connection exceeds by more than 20% the ultimate capacity compared to traditional beam-column connections. In comparing the theoretical models tested with the formulations shown by previous studies, it was found that for specific models dowels, the existing formulation is representative. For the beam-column connection, adjustment was performed in the previous formulation considerations group and edge effects that occur due to the use of two dowels on the tested connection.
Al-Soudani, Maha. "Diagnosis of reinforced concrete structures in civil engineering by GPR technology : development of alternate methods for precise geometric recognition". Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30090.
Texto completoLack of acquaintance in the real geometry of a structure leads to incorrect evaluation of its state. Consequently, this will lead to inaccurate estimation of bearing capacity, durability, stability and moreover, the need for repair or strengthening. Furthermore, optimization of the required time for repair process needs to well recognize the parts of structure to be assessed and also to avoid the critical zones such as reinforcing bars, cables, etc., during repairing. Therefore; it becomes necessary to use a non-destructive testing (NDT) method in order to know the real geometry of structure in particular, the location of reinforcements in reinforced concrete structures. GPR is considered as an ideal non-invasive technique in detecting and locating these reinforcements. However, its accuracy in localization is limited. The aim of this research project has therefore been to increase the accuracy of GPR in recognizing the internal geometry of reinforced concrete structures. The main objective of this study is to locate accurately the position of reinforcements into three dimensions. To achieve this purpose, a new methodology for GPR measurement and processing is proposed in this study.Several configurations of data acquisition using simulated signals are tested to propose and develop an appropriate imaging algorithm for the propagation medium to imagine its internal geometry and to locate accurately the reinforcing bars. Further processing are applied to improve the accuracy of detection and to identify the different interfaces in the tested medium. Both algorithm and processing are applied on simulated signals. Subsequent experimental validations have been applied using real signals acquired from different real reinforced concrete slabs. The goal is to test the ability of proposed imaging algorithm for the localization of different targets. The encouraging results indicate that this algorithm is able to estimate the position of different buried targets and not only the reinforcing bars with an estimation error of (0-1)mm.The performance of proposed algorithm has compared to those of migration method and to the results obtained from pachometer. These comparisons have systematically revealed a better localization accuracy using the developed algorithm.Another study has been proposed in this work by testing the algorithm using modified real signals. These signals are produced by reducing the gain as less as possible. The most obvious finding to emerge from this study is that the proposed algorithm is able to localize the different goals even if the signals reflected by them are of low amplitude
Libros sobre el tema "Precast reinforced concrete structures"
Institute, American Concrete. Specifications for structural concrete, ACI 301-05, with selected ACI references: Field reference manual. Farmington Hills: American Concrete Institute, 2005.
Buscar texto completoAmerican Society of Civil Engineers., ed. Standard practice for direct design of buried precast concrete box sections. Reston, VA: American Society of Civil Engineers, 2000.
Buscar texto completoRodriguez, M. Earthquake resistant precast concrete buildings: Floor accelerations in buildings. Christchurch, N.Z: Dept. of Civil Engineering, University of Canterbury, 2000.
Buscar texto completoAmerican Society of Civil Engineers., ed. Standard practice for direct design of precast concrete box sections for jacking in trenchless construction. Reston, Va: American Society of Civil Engineers, 2001.
Buscar texto completoLeonovich, Sergey, Nikolay Chernoivan, Viktor Tur y Dmitriy Litvinovskiy. Technology of reconstruction of buildings and structures. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1867636.
Texto completoElliott, Kim, ed. Precast Concrete Structures. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315370705.
Texto completoSteinle, Alfred, Hubert Bachmann y Mathias Tillmann, eds. Precast Concrete Structures. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783433609064.
Texto completoBachmann, Hubert y Alfred Steinle. Precast Concrete Structures. Berlin, Germany: Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, 2012. http://dx.doi.org/10.1002/9783433600962.
Texto completoDesign of precast concrete structures. Chichester, West Sussex, England: E. Horwood, 1988.
Buscar texto completoMulti-storey precast concrete framed structures. Oxford [England]: Blackwell Science, 1996.
Buscar texto completoCapítulos de libros sobre el tema "Precast reinforced concrete structures"
Kasapoglu, B., H. Sezen y K. White. "Exterior protection of precast reinforced concrete culvert structures". En Bridge Safety, Maintenance, Management, Life-Cycle, Resilience and Sustainability, 1353–60. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003322641-164.
Texto completoMakoond, N., M. Buitrago y J. M. Adam. "Computational study on the progressive collapse of precast reinforced concrete structures". En Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 533–38. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348443-87.
Texto completoMakoond, N., M. Buitrago y J. M. Adam. "Computational study on the progressive collapse of precast reinforced concrete structures". En Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 187–88. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348450-87.
Texto completoIbrahim, Basil, Salaheldin Mousa, Hamdy M. Mohamed y Brahim Benmokrane. "GFRP Reinforced Precast Concrete Tunnel Lining Segments Under Flexural Cyclic Loading". En 8th International Conference on Advanced Composite Materials in Bridges and Structures, 149–56. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09409-5_17.
Texto completoWitzany, J., R. Zigler y A. Polák. "Precast reinforced concrete demountable system of multi-storey buildings". En Insights and Innovations in Structural Engineering, Mechanics and Computation, 1300–1304. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315641645-213.
Texto completoLosaria, P. E. Joseph, P. E. Steven Nolan, P. E. Andra Diggs y Dave Hartman. "Case Study on CFRP Prestressed Concrete Soldier-Pile Walls with GFRP-Reinforced Precast Concrete Panels". En 8th International Conference on Advanced Composite Materials in Bridges and Structures, 81–89. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09632-7_10.
Texto completoAlmusallam, T., Y. Al-Salloum, H. Elsanadedy, R. Iqbal, H. Abbas y N. Siddiqui. "Risk assessment of precast reinforced concrete buildings against blast loads: Case study". En Insights and Innovations in Structural Engineering, Mechanics and Computation, 972–75. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315641645-160.
Texto completoHosseini, S. M., S. Mousa, H. M. Mohamed y B. Benmokrane. "Development and testing of new precast concrete tunnel segments reinforced with GFRP bars and ties". En Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 1453–58. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348443-237.
Texto completoHosseini, S. M., S. Mousa, H. M. Mohamed y B. Benmokrane. "Development and testing of new precast concrete tunnel segments reinforced with GFRP bars and ties". En Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 505–6. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348450-237.
Texto completoElliott, Kim S. "Precast concrete floors". En Precast Concrete Structures, 125–214. 2a ed. Boca Raton: CRC Press, 2019. http://dx.doi.org/10.1201/9780367814885-4.
Texto completoActas de conferencias sobre el tema "Precast reinforced concrete structures"
Peng, Brian H. H., Richard Fenwick, Rajesh Dhakal y Athol Carr. "Seismic Performance of Reinforced Concrete Frames with Precast-Prestressed Flooring System". En Structures Congress 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41031(341)312.
Texto completo"Lightweight Concrete Bridge Deck Precast Panels Reinforced with GFRP Bars". En SP-275: Fiber-Reinforced Polymer Reinforcement for Concrete Structures 10th International Symposium. American Concrete Institute, 2011. http://dx.doi.org/10.14359/51682439.
Texto completo"Shear Load Testing of Carbon Fiber Reinforced Polymer Strengthened Double Tee Beams in Precast Parking Garage". En SP-188: 4th Intl Symposium - Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures. American Concrete Institute, 1999. http://dx.doi.org/10.14359/5696.
Texto completoXue, Yicong, Yong Yang, Yunlong Yu y Ruyue Liu. "Experimental study on mechanical performance of partially precast steel reinforced concrete beams". En 12th international conference on ‘Advances in Steel-Concrete Composite Structures’ - ASCCS 2018. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/asccs2018.2018.6942.
Texto completo"Cyclic Shear Behavior of Connection between Precast Beam and Deck with Steel Fiber-Reinforced Concrete". En SP-229: Quality of Concrete Structures and Recent Advances in Concrete Materials and Testing. American Concrete Institute, 2005. http://dx.doi.org/10.14359/14748.
Texto completoMirza, Olivia, Andrew Talos, Matthew Hennessy y Brendan Kirkland. "Behaviour and Design of Composite Steel and Precast Concrete Transom for Railway Bridges Application". En 12th international conference on ‘Advances in Steel-Concrete Composite Structures’ - ASCCS 2018. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/asccs2018.2018.6993.
Texto completoTakagi, J., S. Minami y K. Kitayama. "Performance Evaluation of Shear Walls in Existing Wall-Type Precast Reinforced Concrete Residential Buildings with New Openings". En Structures Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41171(401)242.
Texto completoProksch-Weilguni, Clemens y Johann Kollegger. "Resource efficient reinforcement concept for precast tunnel segments". En IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.1352.
Texto completoOrtlepp, R., S. Ortlepp y C. Beyer. "RC Roof Structures from Post-war Time". En IABSE Symposium, Wroclaw 2020: Synergy of Culture and Civil Engineering – History and Challenges. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2020. http://dx.doi.org/10.2749/wroclaw.2020.0601.
Texto completoBrühwiler, Eugen. "UHPFRC is ready to revolutionize existing and new structures". En IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.0067.
Texto completoInformes sobre el tema "Precast reinforced concrete structures"
Ebeling, Robert y Barry White. Load and resistance factors for earth retaining, reinforced concrete hydraulic structures based on a reliability index (β) derived from the Probability of Unsatisfactory Performance (PUP) : phase 2 study. Engineer Research and Development Center (U.S.), marzo de 2021. http://dx.doi.org/10.21079/11681/39881.
Texto completoNema, Arpit y Jose Restrep. Low Seismic Damage Columns for Accelerated Bridge Construction. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, diciembre de 2020. http://dx.doi.org/10.55461/zisp3722.
Texto completoD’Arcy, Thomas J., Walter I. Korkosz y Larbi Sennour. Durability of Precast Prestressed Concrete Structures. Precast/Prestressed Concrete Institute, 1995. http://dx.doi.org/10.15554/pci.rr.mat-007.
Texto completoCarino, Nicholas J. y James R. Clifton. Prediction of cracking in reinforced concrete structures. Gaithersburg, MD: National Institute of Standards and Technology, 1995. http://dx.doi.org/10.6028/nist.ir.5634.
Texto completoAragon, Theresa Clare. Type III Grouted Ductile Reinforcing Bar Connections for Precast Concrete Structures. Precast/Prestressed Concrete Institute, 2018. http://dx.doi.org/10.15554/pci.rr.seis-001.
Texto completoNaus, D. J., C. B. Oland y B. R. Ellingwood. Report on aging of nuclear power plant reinforced concrete structures. Office of Scientific and Technical Information (OSTI), marzo de 1996. http://dx.doi.org/10.2172/219361.
Texto completoWoodson, Stanley C. y William A. Price. Improved Strength Design of Reinforced Concrete Hydraulic Structures - Research Support. Fort Belvoir, VA: Defense Technical Information Center, abril de 1992. http://dx.doi.org/10.21236/ada251470.
Texto completoMorgan, Brian G. y Yahya C. Kurama. "Friction-Damped Unbonded Post-Tensioned Precast Concrete Moment Frame Structures for Seismic Regions". Precast/Prestressed Concrete Institute, 2007. http://dx.doi.org/10.15554/pci.rr.seis-005.
Texto completoBallarini, Roberto, Bora Gencturk, Amit Jain, Hadi Aryan, Yunping Xi, Mohamed Abdelrahman y Benjamin W. Spencer. Multiple Degradation Mechanisms in Reinforced Concrete Structures, Modeling and Risk Analysis. Office of Scientific and Technical Information (OSTI), febrero de 2020. http://dx.doi.org/10.2172/1599377.
Texto completoSpencer, Benjamin W., William M. Hoffman, Daniel Schwen y Sudipta Biswas. Progress on Grizzly Development for Reactor Pressure Vessels and Reinforced Concrete Structures. Office of Scientific and Technical Information (OSTI), septiembre de 2019. http://dx.doi.org/10.2172/1572397.
Texto completo