Literatura académica sobre el tema "Pr-Dns"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Pr-Dns".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Pr-Dns"
Tenneti, Sudheer, Mohammad Mehrabadi y Shankar Subramaniam. "Stochastic Lagrangian model for hydrodynamic acceleration of inertial particles in gas–solid suspensions". Journal of Fluid Mechanics 788 (12 de enero de 2016): 695–729. http://dx.doi.org/10.1017/jfm.2015.693.
Texto completoKERR, ROBERT M. y JACKSON R. HERRING. "Prandtl number dependence of Nusselt number in direct numerical simulations". Journal of Fluid Mechanics 419 (25 de septiembre de 2000): 325–44. http://dx.doi.org/10.1017/s0022112000001464.
Texto completoSong, Jiajun, Panxin Li, Lu Chen, Yuhang Zhao, Fengshi Tian y Benwen Li. "Scaling Law of Flow and Heat Transfer Characteristics in Turbulent Radiative Rayleigh-Bénard Convection of Optically Thick Media". Energies 17, n.º 19 (8 de octubre de 2024): 5009. http://dx.doi.org/10.3390/en17195009.
Texto completoFu, Jianhong, Sheng Chen y Xiaochen Zhou. "Effect of heterogeneity on interphase heat transfer for gas–solid flow: A particle-resolved direct numerical simulation". Physics of Fluids 34, n.º 12 (diciembre de 2022): 123317. http://dx.doi.org/10.1063/5.0130850.
Texto completoCui, Haihang, Qi Chang, Jianhua Chen y Wei Ge. "PR-DNS verification of the stability condition in the EMMS model". Chemical Engineering Journal 401 (diciembre de 2020): 125999. http://dx.doi.org/10.1016/j.cej.2020.125999.
Texto completoLuo, Heng, Fengbin Zhang, Haibo Huang, Yong Huang, Zhendong Liu, Jianxi Yan y Chicheng Yang. "The Effect of Ellipsoidal Particle Surface Roughness on Drag and Heat Transfer Coefficients Using Particle-Resolved Direct Numerical Simulation". Processes 12, n.º 11 (7 de noviembre de 2024): 2473. http://dx.doi.org/10.3390/pr12112473.
Texto completoChilamkurti, Yesaswi N. y Richard D. Gould. "CFD-DEM and PR-DNS studies of low-temperature densely packed beds". International Journal of Heat and Mass Transfer 159 (octubre de 2020): 120056. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120056.
Texto completoWu, X. y P. A. Durbin. "Numerical Simulation of Heat Transfer in a Transitional Boundary Layer With Passing Wakes". Journal of Heat Transfer 122, n.º 2 (29 de noviembre de 1999): 248–57. http://dx.doi.org/10.1115/1.521485.
Texto completoTrane, D., M. Grespan y D. Angeli. "Comparison between DNS and RANS approaches for liquid metal flows around a square rod bundle". Journal of Physics: Conference Series 2766, n.º 1 (1 de mayo de 2024): 012009. http://dx.doi.org/10.1088/1742-6596/2766/1/012009.
Texto completoLakehal, D., M. Fulgosi, G. Yadigaroglu y S. Banerjee. "Direct Numerical Simulation of Turbulent Heat Transfer Across a Mobile, Sheared Gas-Liquid Interface". Journal of Heat Transfer 125, n.º 6 (19 de noviembre de 2003): 1129–39. http://dx.doi.org/10.1115/1.1621891.
Texto completoTesis sobre el tema "Pr-Dns"
Butaye, Edouard. "Modélisation et simulations résolues d'écoulement fluide-particules : du régime de Stokes aux lits fluidisés anisothermes". Electronic Thesis or Diss., Perpignan, 2024. http://www.theses.fr/2024PERP0029.
Texto completoSolar tower power plants harness concentrated solar flux to heat a fluid and generate electricity through a thermodynamic cycle that generates steam and drives a turbo-alternator. To increase thermal/electrical conversion efficiency, it is a required to raise the receiver outlet temperature to at least 800°C. An alternative to conventional fluids is to use air-fluidized particles to raise the working temperature and maximize parietal heat transfer. The solid particles used can withstand temperatures in excess of 1000°C without degrading their physical properties, and store heat efficiently. To meet these challenges, it is necessary to characterize the flow within the receiving tube, as well as the physical mechanisms of heat transfer in these configurations. This work focuses on the local description of anisothermal fluid-particle flows using particle-resolved direct numerical simulations (PR-DNS) with high-performance computing. Improvements are first implemented in the code to compute quantities of interest and optimize the numerical method. Next, several liquid-solid fluidized bed configurations are studied to extensively characterize flow dynamics. Parietal heat transfers are also computed as well as fluid-particle heat transfers. Gas-solid configurations are studied to validate the numerical simulation tool for modeling these flows. Finally, a new scale of resolution is proposed, referred to as Particle Resolved - Subgrid Corrected Simulation (PR-SCS). This scale enables hydrodynamic forces to be accurately modeled despite the coarse resolution
Actas de conferencias sobre el tema "Pr-Dns"
Bergant, R. y I. Tiselj. "The Smallest Temperature Scales in a Turbulent Channel Flow at High Prandtl Numbers". En ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72495.
Texto completoBergant, Robert, Iztok Tiselj y Gad Hetsroni. "Near-Wall Turbulent Heat Transfer at Prandtl Numbers 1 to 54". En ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32006.
Texto completoTiselj, Iztok y Luka Sˇtrubelj. "Passive Scalar Turbulent Channel Flow at Pr=25: DNS-LES Approach". En ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37325.
Texto completoLai, Jonathan K., Elia Merzari, Yassin A. Hassan y Aleksandr Obabko. "Validation and Development of DNS Database for Low Prandtl Numbers in Rod Bundle". En ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5036.
Texto completoBergant, Robert, Iztok Tiselj y Gad Hetsroni. "Resolution Requirements for DNS of Turbulent Heat Transfer Near the Heated Wall at Prandtl Number 5.4". En ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24129.
Texto completoBergant, R. y I. Tiselj. "Numerical Simulations of Turbulent Flume Heat Transfer at Pr = 5.4: Impact of the Smallest Temperature Scales". En ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77144.
Texto completoJahani, B., M. MacDonald y Stuart E. Norris. "Modelling turbulent stratified open channel flow for Pr=7 using multiscale DNS". En 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/ichmt.thmt-23.1260.
Texto completoJahani, B., M. MacDonald y Stuart E. Norris. "Modelling turbulent stratified open channel flow for Pr=7 using multiscale DNS". En 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/thmt-23.1260.
Texto completoOtic´, I. y G. Gro¨tzbach. "Direct Numerical Simulation and RANS Modeling of Turbulent Natural Convection for Low Prandtl Number Fluids". En ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-3132.
Texto completoBhushan, S., M. Elmellouki, W. D. Jock, D. K. Walters, J. K. Lai, Y. A. Hassan, A. Obabko y E. Merzari. "Numerical Investigation of Flow and Heat Transfer Characteristics for Attached and Separated Low-Pr Flows". En ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5273.
Texto completo