Literatura académica sobre el tema "Power HIL simulation"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Power HIL simulation".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Power HIL simulation"

1

Pavlović, Tomislav, Ivan Župan, Viktor Šunde, and Željko Ban. "HIL Simulation of a Tram Regenerative Braking System." Electronics 10, no. 12 (2021): 1379. http://dx.doi.org/10.3390/electronics10121379.

Texto completo
Resumen
Regenerative braking systems are an efficient way to increase the energy efficiency of electric rail vehicles. During the development phase, testing of a regenerative braking system in an electric vehicle is costly and potentially dangerous. For this reason, Hardware-In-the-Loop (HIL) simulation is a useful technique to conduct the system’s testing in real time where the physical parts of the system are replaced by simulation models. This paper presents a HIL simulation of a tram regenerative braking system performed on a scaled model. First, offline simulations are performed using a measured speed profile in order to validate the tram, supercapacitor, and power grid model, as well as the energy control algorithm. The results are then verified in the real-time HIL simulation in which the tram and power grid are emulated using a three-phase converter and LiFePO4 batteries. The energy flow control algorithm controls a three-phase converter which enables the control of energy flow within the regenerative braking system. The results validate the simulated regenerative braking system, making it applicable for implementation in a tram vehicle.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Mihalič, Franc, Mitja Truntič, and Alenka Hren. "Hardware-in-the-Loop Simulations: A Historical Overview of Engineering Challenges." Electronics 11, no. 15 (2022): 2462. http://dx.doi.org/10.3390/electronics11152462.

Texto completo
Resumen
The design of modern industrial products is further improved through the hardware-in-the-loop (HIL) simulation. Realistic simulation is enabled by the closed loop between the hardware under test (HUT) and real-time simulation. Such a system involves a field programmable gate array (FPGA) and digital signal processor (DSP). An HIL model can bypass serious damage to the real object, reduce debugging cost, and, finally, reduce the comprehensive effort during the testing. This paper provides a historical overview of HIL simulations through different engineering challenges, i.e., within automotive, power electronics systems, and different industrial drives. Various platforms, such as National Instruments, dSPACE, Typhoon HIL, or MATLAB Simulink Real-Time toolboxes and Speedgoat hardware systems, offer a powerful tool for efficient and successful investigations in different fields. Therefore, HIL simulation practice must begin already during the university’s education process to prepare the students for professional engagements in the industry, which was also verified experimentally at the end of the paper.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Xinyuan, Gao, Gu Kanru, and Zhou Qianru. "Hardware in the Loop Real-time Simulation of Doubly Fed Off-grid Wind Power System." Journal of Physics: Conference Series 2137, no. 1 (2021): 012018. http://dx.doi.org/10.1088/1742-6596/2137/1/012018.

Texto completo
Resumen
Abstract Hardware in the Loop (HIL) semi-physical real-time simulation can shorten the research period and complete the harsh working condition test, which is difficult to be carried out on the physical platform. Taking the off-grid Doubly Fed Induction Generator (DFIG) wind power system as the research object, this paper proposes the bottom modelling method of HIL real-time simulation. Using the Hardware Description Language VERILOG, the bottom real-time models of DFIG, converter and load are designed on Field Programmable Gate Array (FPGA), connected with the real controller, and the HIL real-time simulation platform is constructed. The experiments of conventional working conditions and unbalance load are carried out on the HIL platform and the physical platform. The operation speed of the HIL platform reaches 0.48μs. Compared with the physical platform, the error of HIL platform is between 1.17 ~ 3.29% under various working conditions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

García-Vellisca, Mariano Alberto, Carlos Quiterio Gómez Muñoz, María Sofía Martínez-García, and Angel de Castro. "Automatic Word Length Selection with Boundary Conditions for HIL of Power Converters." Electronics 12, no. 16 (2023): 3488. http://dx.doi.org/10.3390/electronics12163488.

Texto completo
Resumen
Hardware-in-the-loop (HIL) is a common technique used for testing in power electronics. It draws upon FPGAs (field-programmable gate arrays) because they allow for reaching real-time simulation for mid-high switching frequencies. FPGA area and delay are keys to reaching a compromise between performance and accuracy. To minimize area and delay, signal word length (WL) is critical. Furthermore, the input and output’s WL should be carefully chosen because these signals come from ADCs (analog-to-digital converters) or go to DACs (digital-to-analog converters). In other words, the role of ADCs and DACs is the boundary condition when assigning all the signal WLs in an HIL model. This research presents an automatic method for computing the signal WLs in the corresponding model by considering input/output boundary conditions. This automatic method needs a single simulation to decide both the integer and fractional width of every signal. Our method accelerates the process, showing an advantage over manual methods and those requiring multiple simulations. The proposed method is applied to create all the WL assignments to the signals involved in a fixed-point coded buck converter model, which shows its feasibility.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Estrada, Leonel, Nimrod Vázquez, Joaquín Vaquero, Ángel de Castro, and Jaime Arau. "Real-Time Hardware in the Loop Simulation Methodology for Power Converters Using LabVIEW FPGA." Energies 13, no. 2 (2020): 373. http://dx.doi.org/10.3390/en13020373.

Texto completo
Resumen
Nowadays, the use of the hardware in the loop (HIL) simulation has gained popularity among researchers all over the world. One of its main applications is the simulation of power electronics converters. However, the equipment designed for this purpose is difficult to acquire for some universities or research centers, so ad-hoc solutions for the implementation of HIL simulation in low-cost hardware for power electronics converters is a novel research topic. However, the information regarding implementation is written at a high technical level and in a specific language that is not easy for non-expert users to understand. In this paper, a systematic methodology using LabVIEW software (LabVIEW 2018) for HIL simulation is shown. A fast and easy implementation of power converter topologies is obtained by means of the differential equations that define each state of the power converter. Five simple steps are considered: designing the converter, modeling the converter, solving the model using a numerical method, programming an off-line simulation of the model using fixed-point representation, and implementing the solution of the model in a Field-Programmable Gate Array (FPGA). This methodology is intended for people with no experience in the use of languages as Very High-Speed Integrated Circuit Hardware Description Language (VHDL) for Real-Time Simulation (RTS) and HIL simulation. In order to prove the methodology’s effectiveness and easiness, two converters were simulated—a buck converter and a three-phase Voltage Source Inverter (VSI)—and compared with the simulation of commercial software (PSIM® v9.0) and a real power converter.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Sobanski, Piotr, Milosz Miskiewicz, Grzegorz Bujak, Marcin Szlosek, Nikolaos Oikonomou, and Kai Pietilaeinen. "Real Time Simulation of Power Electronics Medium Voltage DC-Grid Simulator." Energies 14, no. 21 (2021): 7368. http://dx.doi.org/10.3390/en14217368.

Texto completo
Resumen
Power electronics medium-voltage (MV) systems must comply with the requirements defined in grid codes. These systems’ compatibility with the standards can be validated by specialized testing equipment: grid simulators. This paper presents a hardware in the loop (HiL) implementation and the simulation results of a MV multiphase DC/DC converter designed for MV DC grid emulation. By using ABB’s reliable, patented power converter hardware topology (US 10978948 B2) and by applying advanced control algorithms, the presented system can be used for special purposes, such as the emulation of fault events in a DC-grid used for the certification of other devices, or for other research goals. The presented concept of a power electronics DC-grid simulator (PEGS-DC) is characterized by high power capability and high voltage quality. In this paper, the general idea of a power electronics grid simulator applied for the testing of MV electrical systems is discussed. Then, details related to the PEGS-DC, such as its hardware topology and the applied modulation method are presented. Subsequently, the HiL setup is described. The main scope of this article focuses on model the description and presenting recorded HiL simulations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Roskam, Rolf, and Elmar Engels. "A New Slip Algorithm for Use in Hardware-in-the-Loop Simulation to Evaluate Anti Slip Control of Vehicles." Applied Mechanics and Materials 490-491 (January 2014): 740–46. http://dx.doi.org/10.4028/www.scientific.net/amm.490-491.740.

Texto completo
Resumen
Hardware in the Loop (HIL) systems is widely used for testing vehicle controllers in automotive industry. But algorithms for simulation of the vehicle dynamics have to consider the special restrictions for HIL that is a fixed simulation time constant. Due to limitations of computing power the step size often is set to 1ms. Especially for calculation of the wheel slip this will cause a problem when speed starts from zero. Thats why a lot of authors propose a small vehicle speed at the beginning of the simulation. For evaluation of anti slip controllers in HIL systems this is not possible because stand still is the general starting point for the anti slip controller. Different ideas exist in literature to solve this problem but none of them consider the HIL restriction in an overall approach. In this paper a new algorithm for slip calculation is presented. Therefore two different approaches will be analyzed and combined to a new algorithm. Simulation results show the feasibility for HIL systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Cabeza, Luisa F., David Verez, and Mercè Teixidó. "Hardware-in-the-Loop Techniques for Complex Systems Analysis: Bibliometric Analysis of Available Literature." Applied Sciences 13, no. 14 (2023): 8108. http://dx.doi.org/10.3390/app13148108.

Texto completo
Resumen
Simulating complex systems in real time presents both significant advantages and challenges. Hardware-in-the-loop (HIL) simulation has emerged as an interesting technique for addressing these challenges. While HIL has gained attention in the scientific literature, its application in energy studies and power systems remains scattered and challenging to locate. This paper aims to provide an assessment of the penetration of the HIL technique in energy studies and power systems. The analysis of the literature reveals that HIL is predominantly employed in evaluating electrical systems (smart grids, microgrids, wind systems), with limited application in thermal energy systems (energy storage). Notably, the combination of electrical hardware-in-the-loop (EHIL) and thermal hardware-in-the-loop (THIL) techniques has found application in the assessment of vehicle thermal management systems and smart cities and, recently, has also been adopted in building systems. The findings highlight the potential for further exploration and expansion of the HIL technique in diverse energy domains, emphasizing the need for addressing challenges such as hardware–software compatibility, real-time data acquisition, and system complexity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Song, Ke, Yimin Wang, Cancan An, Hongjie Xu, and Yuhang Ding. "Design and Validation of Energy Management Strategy for Extended-Range Fuel Cell Electric Vehicle Using Bond Graph Method." Energies 14, no. 2 (2021): 380. http://dx.doi.org/10.3390/en14020380.

Texto completo
Resumen
In view of the aggravation of global pollution and greenhouse effects, fuel cell electric vehicles (FCEVs) have attracted increasing attention, owing to their ability to release zero emissions. Extended-range fuel cell vehicles (E-RFCEVs) are the most widely used type of fuel cell vehicles. The powertrain system of E-RFCEV is relatively complex. Bond graph theory was used to model the important parts of the E-RFCEV powertrain system: Battery, motor, fuel cell, DC/DC, vehicle, and driver. In order to verify the control effect of energy management strategy (EMS) in a real-time state, bond graph theory was applied to hardware-in-the-loop (HiL) development. An HiL simulation test-bed based on the bond graph model was built, and the HiL simulation verification of the energy management strategy was completed. Based on the comparison to a power-following EMS, it was found that fuzzy logic EMS is more adaptive to vehicle driving conditions. This study aimed to apply bond graph theory to HiL simulations to verify that bond graph modeling is applicable to complex systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Kiss, Dávid, and István Varjasi. "Power-HIL Application Analysis of a 3-level Inverter for PMSM Machine." Periodica Polytechnica Electrical Engineering and Computer Science 65, no. 1 (2021): 62–68. http://dx.doi.org/10.3311/ppee.16645.

Texto completo
Resumen
Power-HIL simulation is one of the emerging areas in power electronics development nowadays. It offers a convenient test environment for the whole power electronics hardware but eliminates the necessity of motor test benches and rotating machines. Selecting a suitable power amplifier for the simulator is however a challenging task. Switching power supplies can be an interesting option as Power Amplifier, but they have to offer superior power capability and dynamic performance over the DUT (Device Under Test), while maintaining high enough switching frequency to meet the dynamic requirements as well. Using commercially available inverters as Power Amplifiers would be an attractive option, if they can achieve the desired emulation accuracy. This paper investigates the possibility of using a common 3-level inverter with an L-C-L coupling network as a Power Amplifier for a P-HIL simulator, to emulate a PMSM (Permanent Magnet Synchronous Machine) machine.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía