Libros sobre el tema "Potentiel machine learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 30 mejores mejores libros para su investigación sobre el tema "Potentiel machine learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Bennaceur, Amel, Reiner Hähnle y Karl Meinke, eds. Machine Learning for Dynamic Software Analysis: Potentials and Limits. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96562-8.
Texto completoPolyakova, Anna, Tat'yana Sergeeva y Irina Kitaeva. The continuous formation of the stochastic culture of schoolchildren in the context of the digital transformation of general education. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1876368.
Texto completoTaha, Zahari, Rabiu Muazu Musa, Mohamad Razali Abdullah y Anwar P.P.Abdul Majeed. Machine Learning in Sports: Identifying Potential Archers. Springer, 2018.
Buscar texto completoPumperla, Max, Alex Tellez y Michal Malohlava. Mastering Machine Learning with Spark 2.x: Harness the potential of machine learning, through spark. Packt Publishing - ebooks Account, 2017.
Buscar texto completoQuantum Machine Learning: Unleashing Potential in Science and Industry. Primedia eLaunch LLC, 2023.
Buscar texto completoMachine Learning for Dynamic Software Analysis : Potentials and Limits: International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, ... Papers. Springer, 2018.
Buscar texto completoNagel, Stefan. Machine Learning in Asset Pricing. Princeton University Press, 2021. http://dx.doi.org/10.23943/princeton/9780691218700.001.0001.
Texto completoAI and Deep Learning in Biometric Security: Trends, Potential, and Challenges. Taylor & Francis Group, 2020.
Buscar texto completoJaswal, Gaurav, Vivek Kanhangad y Raghavendra Ramachandra. AI and Deep Learning in Biometric Security: Trends, Potential, and Challenges. Taylor & Francis Group, 2020.
Buscar texto completoJaswal, Gaurav, Vivek Kanhangad y Raghavendra Ramachandra. AI and Deep Learning in Biometric Security: Trends, Potential, and Challenges. Taylor & Francis Group, 2020.
Buscar texto completoU.S. Air Force Enlisted Classification and Reclassification: Potential Improvements Using Machine Learning and Optimization Models. RAND Corporation, 2022. http://dx.doi.org/10.7249/rr-a284-1.
Texto completoSoulava, Blanka, Victoria Ying y Hamish Cameron. Data Rules for Machine Learning: How Europe Can Unlock the Potential While Mitigating the Risks. Atlantic Council, 2021.
Buscar texto completoRobson, Sean, Maria C. Lytell, Kimberly Curry Hall, Matthew Walsh y Kirsten M. Keller. U. S. Air Force Enlisted Classification and Reclassification: Potential Improvements Using Machine Learning and Optimization Models. RAND Corporation, The, 2022.
Buscar texto completoVallor, Shannon y George A. Bekey. Artificial Intelligence and the Ethics of Self-Learning Robots. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190652951.003.0022.
Texto completoSangeetha, V. y S. Kevin Andrews. Introduction to Artificial Intelligence and Neural Networks. Magestic Technology Solutions (P) Ltd, Chennai, Tamil Nadu, India, 2023. http://dx.doi.org/10.47716/mts/978-93-92090-24-0.
Texto completoMuggleton, Stephen y Nicholas Chater, eds. Human-Like Machine Intelligence. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198862536.001.0001.
Texto completoBarker, Richard. Achieving future impact. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198737780.003.0007.
Texto completoVillez, Kris, Daniel Aguado, Janelcy Alferes, Queralt Plana, Maria Victoria Ruano y Oscar Samuelsson, eds. Metadata Collection and Organization in Wastewater Treatment and Wastewater Resource Recovery Systems. IWA Publishing, 2024. http://dx.doi.org/10.2166/9781789061154.
Texto completoBi, Xiaojun, Andrew Howes, Per Ola Kristensson, Antti Oulasvirta y John Williamson. Introduction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198799603.003.0001.
Texto completoMungoli, Neelesh. Breaking Barriers with AI : Empowering Latin America Through Machine Learning: Unleashing the Potential of Artificial Intelligence to Transform Latin America's Economy, Society, and Future. Absolute Author Publishing House, 2023.
Buscar texto completoZhai, Xiaoming y Joseph Krajcik, eds. Uses of Artificial Intelligence in STEM Education. Oxford University PressOxford, 2024. http://dx.doi.org/10.1093/oso/9780198882077.001.0001.
Texto completoBruno, Michael A. Error and Uncertainty in Diagnostic Radiology. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780190665395.001.0001.
Texto completoRolls, Edmund T. Brain Computations. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198871101.001.0001.
Texto completoPlecháč, Petr. Versification and Authorship Attribution. Karolinum Press, 2021. http://dx.doi.org/10.14712/9788024648903.
Texto completoDimick, William. Python : 3 Books in 1: Beginner's Guide, Data Science and Machine Learning. the Easiest Guide to Get Started in Python Programming. Unlock Your Programmer Potential and Develop Your Project in Just 30 Days. Phormictopus Publishing, 2020.
Buscar texto completoDimick, William. Python : 3 Books in 1: Beginner's Guide, Data Science and Machine Learning. the Easiest Guide to Get Started in Python Programming. Unlock Your Programmer Potential and Develop Your Project in Just 30 Days. Phormictopus Publishing, 2020.
Buscar texto completoOulasvirta, Antti, Per Ola Kristensson, Xiaojun Bi y Andrew Howes, eds. Computational Interaction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198799603.001.0001.
Texto completoDean, Roger T. y Alex McLean, eds. The Oxford Handbook of Algorithmic Music. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780190226992.001.0001.
Texto completoBriggs, Andrew y Michael J. Reiss. Human Flourishing. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198850267.001.0001.
Texto completoVolpi, Elena, Jong Suk Kim, Shaleen Jain y Sangam Shrestha, eds. Artificial Intelligence in Hydrology. IWA Publishing, 2024. http://dx.doi.org/10.2166/9781789064865.
Texto completo