Literatura académica sobre el tema "Post-hoc interpretability"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Post-hoc interpretability".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Post-hoc interpretability"
Feng, Jiangfan, Yukun Liang, and Lin Li. "Anomaly Detection in Videos Using Two-Stream Autoencoder with Post Hoc Interpretability." Computational Intelligence and Neuroscience 2021 (July 26, 2021): 1–15. http://dx.doi.org/10.1155/2021/7367870.
Texto completoZhang, Zaixi, Qi Liu, Hao Wang, Chengqiang Lu, and Cheekong Lee. "ProtGNN: Towards Self-Explaining Graph Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 8 (2022): 9127–35. http://dx.doi.org/10.1609/aaai.v36i8.20898.
Texto completoXu, Qian, Wenzhao Xie, Bolin Liao, et al. "Interpretability of Clinical Decision Support Systems Based on Artificial Intelligence from Technological and Medical Perspective: A Systematic Review." Journal of Healthcare Engineering 2023 (February 3, 2023): 1–13. http://dx.doi.org/10.1155/2023/9919269.
Texto completoGill, Navdeep, Patrick Hall, Kim Montgomery, and Nicholas Schmidt. "A Responsible Machine Learning Workflow with Focus on Interpretable Models, Post-hoc Explanation, and Discrimination Testing." Information 11, no. 3 (2020): 137. http://dx.doi.org/10.3390/info11030137.
Texto completoMarconato, Emanuele, Andrea Passerini, and Stefano Teso. "Interpretability Is in the Mind of the Beholder: A Causal Framework for Human-Interpretable Representation Learning." Entropy 25, no. 12 (2023): 1574. http://dx.doi.org/10.3390/e25121574.
Texto completoDegtiarova, Ganna, Fran Mikulicic, Jan Vontobel, et al. "Post-hoc motion correction for coronary computed tomography angiography without additional radiation dose - Improved image quality and interpretability for “free”." Imaging 14, no. 2 (2022): 82–88. http://dx.doi.org/10.1556/1647.2022.00060.
Texto completoLao, Danning, Qi Liu, Jiazi Bu, Junchi Yan, and Wei Shen. "ViTree: Single-Path Neural Tree for Step-Wise Interpretable Fine-Grained Visual Categorization." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 3 (2024): 2866–73. http://dx.doi.org/10.1609/aaai.v38i3.28067.
Texto completoJalali, Anahid, Alexander Schindler, Bernhard Haslhofer, and Andreas Rauber. "Machine Learning Interpretability Techniques for Outage Prediction: A Comparative Study." PHM Society European Conference 5, no. 1 (2020): 10. http://dx.doi.org/10.36001/phme.2020.v5i1.1244.
Texto completoGarcía-Vicente, Clara, David Chushig-Muzo, Inmaculada Mora-Jiménez, et al. "Evaluation of Synthetic Categorical Data Generation Techniques for Predicting Cardiovascular Diseases and Post-Hoc Interpretability of the Risk Factors." Applied Sciences 13, no. 7 (2023): 4119. http://dx.doi.org/10.3390/app13074119.
Texto completoWang, Zhengguang. "Validation, Robustness, and Accuracy of Perturbation-Based Sensitivity Analysis Methods for Time-Series Deep Learning Models." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 21 (2024): 23768–70. http://dx.doi.org/10.1609/aaai.v38i21.30559.
Texto completoTesis sobre el tema "Post-hoc interpretability"
Jeyasothy, Adulam. "Génération d'explications post-hoc personnalisées." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS027.
Texto completoSEVESO, ANDREA. "Symbolic Reasoning for Contrastive Explanations." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/404830.
Texto completoLaugel, Thibault. "Interprétabilité locale post-hoc des modèles de classification "boites noires"." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS215.
Texto completoRadulovic, Nedeljko. "Post-hoc Explainable AI for Black Box Models on Tabular Data." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAT028.
Texto completoBhattacharya, Debarpan. "A Learnable Distillation Approach For Model-agnostic Explainability With Multimodal Applications." Thesis, 2023. https://etd.iisc.ac.in/handle/2005/6108.
Texto completoCapítulos de libros sobre el tema "Post-hoc interpretability"
Kamath, Uday, and John Liu. "Post-Hoc Interpretability and Explanations." In Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83356-5_5.
Texto completoGreenwell, Brandon M. "Peeking inside the “black box”: post-hoc interpretability." In Tree-Based Methods for Statistical Learning in R. Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003089032-6.
Texto completoSantos, Flávio Arthur Oliveira, Cleber Zanchettin, José Vitor Santos Silva, Leonardo Nogueira Matos, and Paulo Novais. "A Hybrid Post Hoc Interpretability Approach for Deep Neural Networks." In Lecture Notes in Computer Science. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86271-8_50.
Texto completoAnn Jo, Ashly, and Ebin Deni Raj. "Post hoc Interpretability: Review on New Frontiers of Interpretable AI." In Lecture Notes in Networks and Systems. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1203-2_23.
Texto completoMolnar, Christoph, Giuseppe Casalicchio, and Bernd Bischl. "Quantifying Model Complexity via Functional Decomposition for Better Post-hoc Interpretability." In Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43823-4_17.
Texto completoStevens, Alexander, Johannes De Smedt, and Jari Peeperkorn. "Quantifying Explainability in Outcome-Oriented Predictive Process Monitoring." In Lecture Notes in Business Information Processing. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98581-3_15.
Texto completoTurbé, Hugues, Mina Bjelogrlic, Mehdi Namdar, et al. "A Lightweight and Interpretable Model to Classify Bundle Branch Blocks from ECG Signals." In Studies in Health Technology and Informatics. IOS Press, 2022. http://dx.doi.org/10.3233/shti220393.
Texto completoDumka, Ankur, Vaibhav Chaudhari, Anil Kumar Bisht, Ruchira Rawat, and Arnav Pandey. "Methods, Techniques, and Application of Explainable Artificial Intelligence." In Advances in Environmental Engineering and Green Technologies. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-2351-9.ch017.
Texto completoLi, Yaoman, and Irwin King. "Neural Architecture Search for Explainable Networks." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2023. http://dx.doi.org/10.3233/faia230423.
Texto completoActas de conferencias sobre el tema "Post-hoc interpretability"
Laugel, Thibault, Marie-Jeanne Lesot, Christophe Marsala, Xavier Renard, and Marcin Detyniecki. "The Dangers of Post-hoc Interpretability: Unjustified Counterfactual Explanations." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/388.
Texto completoVieira, Carla Piazzon, and Luciano Antonio Digiampietri. "Machine Learning post-hoc interpretability: a systematic mapping study." In SBSI: XVIII Brazilian Symposium on Information Systems. ACM, 2022. http://dx.doi.org/10.1145/3535511.3535512.
Texto completoAttanasio, Giuseppe, Debora Nozza, Eliana Pastor, and Dirk Hovy. "Benchmarking Post-Hoc Interpretability Approaches for Transformer-based Misogyny Detection." In Proceedings of NLP Power! The First Workshop on Efficient Benchmarking in NLP. Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.nlppower-1.11.
Texto completoSujana, D. Swainson, and D. Peter Augustine. "Explaining Autism Diagnosis Model Through Local Interpretability Techniques – A Post-hoc Approach." In 2023 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI). IEEE, 2023. http://dx.doi.org/10.1109/icdsaai59313.2023.10452575.
Texto completoGkoumas, Dimitris, Qiuchi Li, Yijun Yu, and Dawei Song. "An Entanglement-driven Fusion Neural Network for Video Sentiment Analysis." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/239.
Texto completo