Índice
Literatura académica sobre el tema "Post-clustering inference"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Post-clustering inference".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Post-clustering inference"
Balabaeva, Ksenia y Sergey Kovalchuk. "Post-hoc Interpretation of Clinical Pathways Clustering using Bayesian Inference". Procedia Computer Science 178 (2020): 264–73. http://dx.doi.org/10.1016/j.procs.2020.11.028.
Texto completoHessami, Masoud, François Anctil y Alain A. Viau. "An adaptive neuro-fuzzy inference system for the post-calibration of weather radar rainfall estimation". Journal of Hydroinformatics 5, n.º 1 (1 de enero de 2003): 63–70. http://dx.doi.org/10.2166/hydro.2003.0005.
Texto completoHivert, Benjamin, Denis Agniel, Rodolphe Thiébaut y Boris P. Hejblum. "Post-clustering difference testing: Valid inference and practical considerations with applications to ecological and biological data". Computational Statistics & Data Analysis 193 (mayo de 2024): 107916. http://dx.doi.org/10.1016/j.csda.2023.107916.
Texto completoMoreno, Elías, Francisco-José Vázquez-Polo y Miguel A. Negrín. "Bayesian meta-analysis: The role of the between-sample heterogeneity". Statistical Methods in Medical Research 27, n.º 12 (16 de mayo de 2017): 3643–57. http://dx.doi.org/10.1177/0962280217709837.
Texto completoMousavi Fard, Zahra Sadat, Hassan Asilian Mahabadi, Farahnaz Khajehnasiri y Mohammad Amin Rashidi. "Modeling the concentration of suspended particles by fuzzy inference system (FIS) and adaptive neuro-fuzzy inference system (ANFIS) techniques: A case study in the metro stations". Environmental Health Engineering and Management 10, n.º 3 (20 de agosto de 2023): 311–19. http://dx.doi.org/10.34172/ehem.2023.35.
Texto completoMuhammad, Fadel, Changkun Xie, Julian Vogel y Afshin Afshari. "Inference of Local Climate Zones from GIS Data, and Comparison to WUDAPT Classification and Custom-Fit Clusters". Land 11, n.º 5 (18 de mayo de 2022): 747. http://dx.doi.org/10.3390/land11050747.
Texto completoChen, Qipeng, Qiaoqiao Xiong, Haisong Huang, Saihong Tang y Zhenghong Liu. "Research on the Construction of an Efficient and Lightweight Online Detection Method for Tiny Surface Defects through Model Compression and Knowledge Distillation". Electronics 13, n.º 2 (5 de enero de 2024): 253. http://dx.doi.org/10.3390/electronics13020253.
Texto completoČerna Bolfíková, Barbora, Kristýna Eliášová, Miroslava Loudová, Boris Kryštufek, Petros Lymberakis, Attila D. Sándor y Pavel Hulva. "Glacial allopatry vs. postglacial parapatry and peripatry: the case of hedgehogs". PeerJ 5 (25 de abril de 2017): e3163. http://dx.doi.org/10.7717/peerj.3163.
Texto completoShi, Wenkai, Wenbin An, Feng Tian, Yan Chen, Yaqiang Wu, Qianying Wang y Ping Chen. "A Unified Knowledge Transfer Network for Generalized Category Discovery". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 17 (24 de marzo de 2024): 18961–69. http://dx.doi.org/10.1609/aaai.v38i17.29862.
Texto completovan de Stolpe, A., W. Verhaegh y L. Holtzer. "OS5.3 Quantitative signaling pathway analysis of Diffuse Intrinsic Pontine Glioma identifies two subtypes, respectively high TGFβ/MAPK-AP1 and high PI3K/HH pathway activity, which are potentially clinically actionable". Neuro-Oncology 21, Supplement_3 (agosto de 2019): iii11. http://dx.doi.org/10.1093/neuonc/noz126.036.
Texto completoTesis sobre el tema "Post-clustering inference"
Enjalbert, Courrech Nicolas. "Inférence post-sélection pour l'analyse des données transcriptomiques". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES199.
Texto completoIn the field of transcriptomics, technological advances, such as microarrays and high-throughput sequencing, have enabled large-scale quantification of gene expression. These advances have raised statistical challenges, particularly in differential expression analysis, which aims to identify genes that significantly differentiate between two populations. However, traditional inference procedures lose their ability to control the false positive rate when biologists select a subset of genes. Post-hoc inference methods address this limitation by providing control over the number of false positives, even for arbitrary gene sets. The first contribution of this manuscript demonstrates the effectiveness of these methods for the differential analysis of transcriptomic data between two biological conditions, notably through the introduction of a linear-time algorithm for computing post-hoc bounds, adapted to the high dimensionality of the data. An interactive application was also developed to facilitate the selection and simultaneous evaluation of post-hoc bounds for sets of genes of interest. These contributions are presented in the first part of the manuscript. The technological evolution towards single-cell sequencing has raised new questions, particularly regarding the identification of genes whose expression distinguishes one cellular group from another. This issue is complex because cell groups must first be estimated using clustering method before performing a comparative test, leading to a circular analysis. In the second part of this manuscript, we present a review of post-clustering inference methods addressing this problem, as well as a numerical comparison of multivariate and marginal approaches for cluster comparison. Finally, we explore how the use of mixture models in the clustering step can be exploited in post-clustering tests, and discuss perspectives for applying these tests to transcriptomic data