Artículos de revistas sobre el tema "Porphyromonas gingivalis"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Porphyromonas gingivalis.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Porphyromonas gingivalis".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Britos, Maria Rosenda, Cynthya Solange Sin, Silvia Mercedes Ortega y Olga Miriam Vasek. "Diseño y estandarización de la técnica de PCR para Porphyromonas gingivalis". Revista de la Facultad de Odontología 10, n.º 1 (7 de junio de 2017): 25. http://dx.doi.org/10.30972/rfo.1012931.

Texto completo
Resumen
El objetivo del presente trabajo fue diseñar y estandarizar la técnica de PCR para detección en líquido gingival de Porphyromonas gingivalis, en pacientes con enfermedad periodontal. Material y métodos: Se utilizaron iniciadores específicos para el gen ARNr 16s de Porphyromonas gingivalis. La especificidad de los iniciadores se ensayó utilizando material genético extraído de la cepa de referencia Porphyromonas gingivalis ATCC 33277. Se ajustaron las condiciones de amplificación y concentraciones de la mezcla de reacción. Para validar la técnica se aplicó a diez muestras clínicas de líquido gingival de pacientes con enfermedad periodontal. Resultados: Se vizualizaron bandas nítidas a 197pb utilizando cebadores específicos en seis muestras clínicas, y se obtuvo sensibilidad hasta 15 ug/ml de ADN purificado de la cepa de referencia ATCC 33277.Conclusiones: Se validó y estandarizó una PCR sencilla para la detección de Porphyromonas gingivalis en líquido gingival
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Griffen, Ann L., Mitzi R. Becker, Sharon R. Lyons, Melvin L. Moeschberger y Eugene J. Leys. "Prevalence of Porphyromonas gingivalisand Periodontal Health Status". Journal of Clinical Microbiology 36, n.º 11 (1998): 3239–42. http://dx.doi.org/10.1128/jcm.36.11.3239-3242.1998.

Texto completo
Resumen
Periodontitis is a common, progressive disease that eventually affects the majority of the population. The local destruction of periodontitis is believed to result from a bacterial infection of the gingival sulcus, and several clinical studies have provided evidence to implicate Porphyromonas gingivalis. If P. gingivalis is a periodontal pathogen, it would be expected to be present in most subjects with disease and rarely detected in subjects with good periodontal health. However, in most previous studies, P. gingivalis has not been detected in the majority of subjects with disease, and age-matched, periodontally healthy controls were not included for comparison. The purpose of the study reported here was to compare the prevalence of P. gingivalis in a group with periodontitis to that of a group that is periodontally healthy. A comprehensive sampling strategy and a sensitive PCR assay were used to maximize the likelihood of detection. The target sequence for P. gingivalis-specific amplification was the transcribed spacer region within the ribosomal operon. P. gingivalis was detected in only 25% (46 of 181) of the healthy subjects but was detected in 79% (103 of 130) of the periodontitis group (P < 0.0001). The odds ratio for being infected with P. gingivalis was 11.2 times greater in the periodontitis group than in the healthy group (95% confidence interval, 6.5 to 19.2). These data implicate P. gingivalisin the pathogenesis of periodontitis and suggest that P. gingivalis may not be a normal inhabitant of a periodontally healthy dentition.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Reyes, Leticia. "Porphyromonas gingivalis". Trends in Microbiology 29, n.º 4 (abril de 2021): 376–77. http://dx.doi.org/10.1016/j.tim.2021.01.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Belibasakis, Georgios, Thomas Thurnheer y Nagihan Bostanci. "Porphyromonas gingivalis". Virulence 5, n.º 4 (23 de abril de 2014): 463–64. http://dx.doi.org/10.4161/viru.28930.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Zhou, Yun, Maryta Sztukowska, Qian Wang, Hiroaki Inaba, Jan Potempa, David A. Scott, Huizhi Wang y Richard J. Lamont. "Noncanonical Activation of β-Catenin by Porphyromonas gingivalis". Infection and Immunity 83, n.º 8 (1 de junio de 2015): 3195–203. http://dx.doi.org/10.1128/iai.00302-15.

Texto completo
Resumen
Porphyromonas gingivalisis an established pathogen in periodontal disease and an emerging pathogen in serious systemic conditions, including some forms of cancer. We investigated the effect ofP. gingivalison β-catenin signaling, a major pathway in the control of cell proliferation and tumorigenesis. Infection of gingival epithelial cells withP. gingivalisdid not influence the phosphorylation status of β-catenin but resulted in proteolytic processing. The use of mutants deficient in gingipain production, along with gingipain-specific inhibitors, revealed that gingipain proteolytic activity was required for β-catenin processing. The β-catenin destruction complex components Axin1, adenomatous polyposis coli (APC), and GSK3β were also proteolytically processed byP. gingivalisgingipains. Cell fractionation and Western blotting demonstrated that β-catenin fragments were translocated to the nucleus. The accumulation of β-catenin in the nucleus followingP. gingivalisinfection was confirmed by immunofluorescence microscopy. A luciferase reporter assay showed thatP. gingivalisincreased the activity of the β-catenin-dependent TCF/LEF promoter.P. gingivalisdid not increase Wnt3a mRNA levels, a finding consistent withP. gingivalis-induced proteolytic processing causing the increase in TCF/LEF promoter activity. Thus, our data indicate thatP. gingivaliscan induce the noncanonical activation of β-catenin and disassociation of the β-catenin destruction complex by gingipain-dependent proteolytic processing. β-Catenin activation in epithelial cells byP. gingivalismay contribute to a proliferative phenotype.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Andrian, E., D. Grenier y M. Rouabhia. "Porphyromonas gingivalis-Epithelial Cell Interactions in Periodontitis". Journal of Dental Research 85, n.º 5 (mayo de 2006): 392–403. http://dx.doi.org/10.1177/154405910608500502.

Texto completo
Resumen
Emerging data on the consequences of the interactions between invasive oral bacteria and host cells have provided new insights into the pathogenesis of periodontal disease. Indeed, modulation of the mucosal epithelial barrier by pathogenic bacteria appears to be a critical step in the initiation and progression of periodontal disease. Periodontopathogens such as Porphyromonas gingivalis have developed different strategies to perturb the structural and functional integrity of the gingival epithelium. P. gingivalis adheres to, invades, and replicates within human epithelial cells. Adhesion of P. gingivalis to host cells is multimodal and involves the interaction of bacterial cell-surface adhesins with receptors expressed on the surfaces of epithelial cells. Internalization of P. gingivalis within host cells is rapid and requires both bacterial contact-dependent components and host-induced signaling pathways. P. gingivalis also subverts host responses to bacterial challenges by inactivating immune cells and molecules and by activating host processes leading to tissue destruction. The adaptive ability of these pathogens that allows them to survive within host cells and degrade periodontal tissue constituents may contribute to the initiation and progression of periodontitis. In this paper, we review current knowledge on the molecular cross-talk between P. gingivalis and gingival epithelial cells in the development of periodontitis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Nadhifah Salsabila, Nila Kasuma y Eti Yerizel. "Determinasi Jumlah Bakteri Porphyromonas Gingivalis ATCC 33277 pada Saliva Anak Stunting". e-GiGi 12, n.º 1 (5 de agosto de 2023): 26–31. http://dx.doi.org/10.35790/eg.v12i1.47864.

Texto completo
Resumen
Abstract: Nutrition affects the immune system and the development of oral health, including periodontal tissue health. Stunted children experience decreased salivary flow rate causing the growth of microorganisms that cause periodontal disease. Porphyromonas gingivalis is referred to one of the keystone pathogens in the development of periodontal disease. This study aimed to identify the number of Porphyromonas gingivalis ATCC 33277 bacteria in stunted child saliva. This was a descriptive study with a cross sectional design. Prior to collection, subjects were instructed to rinse their mouth for 30 seconds using distilled water, saliva was collected with draining method, then 2 mL of saliva was taken, and DNA was isolated from Porphyromonas gingivalis ATCC 33277. DNA amplification and DNA calculation of Porphyromonas gingivalis ATCC 33277 were performed by using Real-time PCR. The results obtained 23 stunted children age 6-12 years as subjects. The average number of Porphyromonas gingivalis ATCC 33277 bacteria in stunting child saliva was 230.8 x 106 ± 320.1 x 106 CFU/ml. In conclusion, the number of Porphyromonas gingivalis ATCC 33277 is higher in stunted children saliva than in normal child saliva. Keywords: stunted children; Porphyromonas gingivalis ATCC 33277 bacteria; periodontal diseases Abstrak: Gizi memengaruhi sistem pertahanan dan perkembangan kesehatan rongga mulut termasuk kesehatan jaringan periodontal. Anak stunting mengalami penurunan laju alir saliva yang menyebabkan pertumbuhan mikroorganisme penyebab penyakit periodontal, antara lain Porphyromonas gingivalis sebagai salah satu keystone pathogens dalam perkembangan penyakit periodontal. Penelitian ini bertujuan untuk menentukan jumlah bakteri Porphyromonas gingivalis ATCC 33277 pada saliva anak stunting. Jenis penelitian ialah deskriptif dengan desain potong lintang. Sebelum pengambilan saliva, subjek diinstruksikan berkumur selama 30 detik menggunakan akuades. Pengambilan saliva dengan metode draining selama 10 menit, saliva terkumpul sebanyak 2 mL, dan dilakukan isolasi DNA bakteri Porphyromonas gingivalis ATCC 33277. Amplifikasi DNA dan perhitungan jumlah DNA bakteri Porphyromonas gingivalis ATCC 33277 dilakukan menggunakan Real-time PCR. Hasil penelitian mendapatkan 23 anak stunting dengan usia 6-12 tahun. Rerata jumlah bakteri Porphyromonas gingivalis ATCC 33277 pada saliva anak stunting 230,8x106±320,1x106 CFU/ml yang lebih tinggi daripada anak sehat yaitu 180,8x106±201,8x106 CFU/mL Simpulan penelitian ini ialah rerata jumlah bakteri Porphyromonas gingivalis ATCC 33277 pada saliva anak stunting lebih tinggi daripada saliva anak normal. Kata kunci: anak stunting; bakteri Porphyromonas gingivalis ATCC 33277; penyakit periodontal
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Darveau, Richard P., Carol M. Belton, Robert A. Reife y Richard J. Lamont. "Local Chemokine Paralysis, a Novel Pathogenic Mechanism for Porphyromonas gingivalis". Infection and Immunity 66, n.º 4 (1 de abril de 1998): 1660–65. http://dx.doi.org/10.1128/iai.66.4.1660-1665.1998.

Texto completo
Resumen
ABSTRACT Periodontitis, which is widespread in the adult population, is a persistent bacterial infection associated with Porphyromonas gingivalis. Gingival epithelial cells are among the first cells encountered by both P. gingivalis and commensal oral bacteria. The chemokine interleukin 8 (IL-8), a potent chemoattractant and activator of polymorphonuclear leukocytes, was secreted by gingival epithelial cells in response to components of the normal oral flora. In contrast, P. gingivalis was found to strongly inhibit IL-8 accumulation from gingival epithelial cells. Inhibition was associated with a decrease in mRNA for IL-8. Antagonism of IL-8 accumulation did not occur in KB cells, an epithelial cell line that does not support high levels of intracellular invasion by P. gingivalis. Furthermore, a noninvasive mutant of P. gingivalis was unable to antagonize IL-8 accumulation. Invasion-dependent destruction of the gingival IL-8 chemokine gradient at sites of P. gingivaliscolonization (local chemokine paralysis) will severely impair mucosal defense and represents a novel mechanism for bacterial colonization of host tissue.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Enersen, Morten, Kazuhiko Nakano y Atsuo Amano. "Porphyromonas gingivalis fimbriae". Journal of Oral Microbiology 5, n.º 1 (1 de enero de 2013): 20265. http://dx.doi.org/10.3402/jom.v5i0.20265.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Jauregui, Catherine E., Qian Wang, Christopher J. Wright, Hiroki Takeuchi, Silvia M. Uriarte y Richard J. Lamont. "Suppression of T-Cell Chemokines by Porphyromonas gingivalis". Infection and Immunity 81, n.º 7 (15 de abril de 2013): 2288–95. http://dx.doi.org/10.1128/iai.00264-13.

Texto completo
Resumen
ABSTRACTPorphyromonas gingivalisis a major pathogen in periodontal disease and is associated with immune dysbiosis. In this study, we found thatP. gingivalisdid not induce the expression of the T-cell chemokine IP-10 (CXCL10) from neutrophils, peripheral blood mononuclear cells (PBMCs), or gingival epithelial cells. Furthermore,P. gingivalissuppressed gamma interferon (IFN-γ)-stimulated release of IP-10, ITAC (CXCL11), and Mig (CXCL9) from epithelial cells and inhibited IP-10 secretion in a mixed infection with the otherwise stimulatoryFusobacterium nucleatum. Inhibition of chemokine expression occurred at the level of gene transcription and was associated with downregulation of interferon regulatory factor 1 (IRF-1) and decreased levels of Stat1. Ectopic expression of IRF-1 in epithelial cells relievedP. gingivalis-induced inhibition of IP-10 release. Direct contact betweenP. gingivalisand epithelial cells was not required for IP-10 inhibition. These results highlight the immune-disruptive potential ofP. gingivalis. Suppression of IP-10 and other Th1-biasing chemokines byP. gingivalismay perturb the balance of protective and destructive immunity in the periodontal tissues and facilitate the pathogenicity of oral microbial communities.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Nabila, Rina, Cicih Bhakti Purnamasari y Alhawaris Alhawaris. "UJI AKTIVITAS ANTIBAKTERI EKSTRAK ETANOL DAUN KAYU MANIS (Cinnamomum burmannii blume) TERHADAP PERTUMBUHAN BAKTERI Porphyromonas gingivalis DENGAN METODE DISC DIFFUSION". Jurnal Kedokteran Mulawarman 8, n.º 2 (24 de septiembre de 2021): 64. http://dx.doi.org/10.30872/j.ked.mulawarman.v8i2.6404.

Texto completo
Resumen
Periodontitis merupakan penyakit tertinggi keenam di seluruh dunia dengan Porphyromonas gingivalis sebagai salah satu bakteri penyebabnya. Daun kayu manis (Cinnamomum burmannii blume) menunjukkan beberapa aktivitas antimikroba, seperti antibakteri dan anti-jamur. Penelitian ini dilakukan untuk mengetahui aktivitas antibakteri ekstrak Cinnamomum burmannii blume terhadap pertumbuhan Porphyromonas gingivalis. Desain penelitian yang digunakan adalah the post test only control group design. Bakteri Porphyromonas gingivalis ditumbuhkan pada medium Blood Agar Plate (BAP) diberi perlakuan menggunakan ekstrak etanol Cinnamomum burmannii blume dengan konsentrasi sebesar 10%, 20%, 30%, 40%, dan 50%. Pengulangan dilakukan sebanyak 5 kali. Hasil penelitian menunjukkan bahwa ekstrak etanol Cinnamomum burmannii blume tidak membentuk zona hambat di sekitar paper disc terhadap pertumbuhan Porphyromonas gingivalis pada semua konsentrasi. Ekstrak etanol Cinnamomum burmannii blume tidak memiliki aktivitas antibakteri terhadap pertumbuhan Porphyromonas gingivalis
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Waller, Tobias, Laura Kesper, Josefine Hirschfeld, Henrik Dommisch, Johanna Kölpin, Johannes Oldenburg, Julia Uebele et al. "Porphyromonas gingivalis Outer Membrane Vesicles Induce Selective Tumor Necrosis Factor Tolerance in a Toll-Like Receptor 4- and mTOR-Dependent Manner". Infection and Immunity 84, n.º 4 (8 de febrero de 2016): 1194–204. http://dx.doi.org/10.1128/iai.01390-15.

Texto completo
Resumen
Porphyromonas gingivalisis an important member of the anaerobic oral flora. Its presence fosters growth of periodontal biofilm and development of periodontitis. In this study, we demonstrated that lipophilic outer membrane vesicles (OMV) shed fromP. gingivalispromote monocyte unresponsiveness to liveP. gingivalisbut retain reactivity to stimulation with bacterial DNA isolated fromP. gingivalisor AIM2 ligand poly(dA·dT). OMV-mediated tolerance ofP. gingivalisis characterized by selective abrogation of tumor necrosis factor (TNF). Neutralization of interleukin-10 (IL-10) during OMV challenge partially restores monocyte responsiveness toP. gingivalis; full reactivity toP. gingivaliscan be restored by inhibition of mTOR signaling, which we previously identified as the major signaling pathway promoting Toll-like receptor 2 and Toll-like receptor 4 (TLR2/4)-mediated tolerance in monocytes. However, despite previous reports emphasizing a central role of TLR2 in innate immune recognition ofP. gingivalis, our current findings highlight a selective role of TLR4 in the promotion of OMV-mediated TNF tolerance: only blockade of TLR4—and not of TLR2—restores responsiveness toP. gingivalis. Of further note, OMV-mediated tolerance is preserved in the presence of cytochalasin B and chloroquine, indicating that triggering of surface TLR4 is sufficient for this effect. Taking the results together, we propose thatP. gingivalisOMV contribute to local immune evasion ofP. gingivalisby hampering the host response.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Peeran, Syed Wali, Manohar Murugan, Nagabhushana Doggalli, Hytham Fageeh, Wael Ibrahim, Mohammed Sultan Al-Ak’hali y Syed Nahid Basheer. "Herbal Composite Preparation and Investigating its Efficiency to Inhibit Biofilm Formation and Virulence Factors of Prevotella Intermedia and Porphyromonas Gingivalis – Formulation of Mouthwash Using a Herbal Composite and Evaluating its Anti-microbial Activity". Journal of Pharmacy and Bioallied Sciences 16, Suppl 2 (abril de 2024): S1574—S1584. http://dx.doi.org/10.4103/jpbs.jpbs_998_23.

Texto completo
Resumen
ABSTRACT Herbal composite preparation was studied with the aim of inhibiting the virulence factors of two dental pathogens: Prevotella intermedia and Porphyromonas gingivalis. A novel herbal composite was developed using the herbal extracts of Wrightia tinctoria and Bauhinia variegata. During the study, the following observations were noted. The minimal inhibitory concentration of Wrightia tinctoria and Bauhinia variegata composites (WBc) was obtained for the test concentration of 20 μg/ml (16 ± 0.57 mm and 15 ± 0.75 mm of inhibitory zones against Prevotella intermedia and Porphyromonas gingivalis, respectively). Biofilm inhibition assay results revealed about 0.51 ± 1.25 mg/ml and 0.53 ± 0.57 mg/ml of minimal biofilm eradication concentration (MBEC) against Prevotella intermedia and Porphyromonas gingivalis, respectively. The effect of WBc on lactic acid production showed that 200 μg/ml and 400 μg/ml concentrates reduced up to 80% and 70% in Prevotella intermedia and Porphyromonas gingivalis, respectively. Formulated herbal mouthwash showed good stability under all three different test conditions (5°C, 25°C, and 40°C) as the color, odor, phase separation, and homogeneity were not changed for the period of 3 months. The anti-bacterial activity of formulated mouthwash (30 μg/ml) exhibited maximum inhibitory zones of about 18 ± 0.75 mm and 19 ± 1.05 mm against the respective test bacteria – Prevotella intermedia and Porphyromonas gingivalis. Amplification of mfa1 and clpB genes showed 246 bp and 294 bp fragments of P. gingivalis and 238 bp and 280 bp fragments of P. intermedia during agarose electrophoretic analysis. The docking report revealed -5.84 Kcal/Mol binding energy and found three hydrogen bonding between the quercetin and target protein, mfa1 of Porphyromonas gingivalis. The target protein, clpB of Prevotella intermedia, and quercetin had -6.72 Kcal/Mol binding energy and found four hydrogen bonds between them. The developed composite could be optimized in future to develop a novel and biocompatible herbal mouthwash for the prevention of different dental caries and gingival inflammation associated with dental biofilm formation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Lamont, R. J., A. Chan, C. M. Belton, K. T. Izutsu, D. Vasel y A. Weinberg. "Porphyromonas gingivalis invasion of gingival epithelial cells." Infection and immunity 63, n.º 10 (1995): 3878–85. http://dx.doi.org/10.1128/iai.63.10.3878-3885.1995.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Ardhani, Retno, Rasda Diana y Bidhari Pidhatika. "How Porphyromonas gingivalis Navigate the Map: The Effect of Surface Topography on the Adhesion of Porphyromonas gingivalis on Biomaterials". Materials 15, n.º 14 (18 de julio de 2022): 4988. http://dx.doi.org/10.3390/ma15144988.

Texto completo
Resumen
The main purpose of this study is to develop an understanding of how Porphyromonas gingivalis responds to subperiosteal implant surface topography. A literature review was drawn from various electronic databases from 2000 to 2021. The two main keywords used were “Porphyromonas gingivalis” and “Surface Topography”. We excluded all reviews and or meta-analysis articles, articles not published in English, and articles with no surface characterization process or average surface roughness (Ra) value. A total of 26 selected publications were then included in this study. All research included showed the effect of topography on Porphyromonas gingivalis to various degrees. It was found that topography features such as size and shape affected Porphyromonas gingivalis adhesion to subperiosteal implant materials. In general, a smaller Ra value reduces Porphyromonas gingivalis regardless of the type of materials, with a threshold of 0.3 µm for titanium.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Wang, Yu-Hsiung, Jin Jiang, Qiang Zhu, Amer Z. AlAnezi, Robert B. Clark, Xi Jiang, David W. Rowe y Frank C. Nichols. "Porphyromonas gingivalis Lipids Inhibit Osteoblastic Differentiation and Function". Infection and Immunity 78, n.º 9 (28 de junio de 2010): 3726–35. http://dx.doi.org/10.1128/iai.00225-10.

Texto completo
Resumen
ABSTRACT Porphyromonas gingivalis produces unusual sphingolipids that are known to promote inflammatory reactions in gingival fibroblasts and Toll-like receptor 2 (TLR2)-dependent secretion of interleukin-6 from dendritic cells. The aim of the present study was to examine whether P. gingivalis lipids inhibit osteoblastic function. Total lipids from P. gingivalis and two fractions, phosphoglycerol dihydroceramides and phosphoethanolamine dihydroceramides, were prepared free of lipid A. Primary calvarial osteoblast cultures derived from 5- to 7-day-old CD-1 mice were used to examine the effects of P. gingivalis lipids on mineralized nodule formation, cell viability, apoptosis, cell proliferation, and gene expression. P. gingivalis lipids inhibited osteoblast differentiation and fluorescence expression of pOBCol2.3GFP in a concentration-dependent manner. However, P. gingivalis lipids did not significantly alter osteoblast proliferation, viability, or apoptosis. When administered during specific intervals of osteoblast growth, P. gingivalis total lipids demonstrated inhibitory effects on osteoblast differentiation only after the proliferation stage of culture. Reverse transcription-PCR confirmed the downregulation of osteoblast marker genes, including Runx2, ALP, OC, BSP, OPG, and DMP-1, with concurrent upregulation of RANKL, tumor necrosis factor alpha, and MMP-3 genes. P. gingivalis total lipids and lipid fractions inhibited calvarial osteoblast gene expression and function in vivo, as determined by the loss of expression of another osteoblast differentiation reporter, pOBCol3.6GFPcyan, and reduced uptake of Alizarin complexone stain. Finally, lipid inhibition of mineral nodule formation in vitro was dependent on TLR2 expression. Our results indicate that inhibition of osteoblast function and gene expression by P. gingivalis lipids represents a novel mechanism for altering alveolar bone homeostasis at periodontal disease sites.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Ramos Perfecto, Donald, Hilda Moromi Nakata y Elba Martínez Cadillo. "Porphyromonas gingivalis:patógeno predominante en la periodontitis crónica". Odontología Sanmarquina 14, n.º 1 (14 de mayo de 2014): 34. http://dx.doi.org/10.15381/os.v14i1.2907.

Texto completo
Resumen
Porphyromonas gingivales es un bacilo gram negativo predominante en la Periodontitis crónica, sus múltiples factores de virulencia la hacen sumamente agresiva. En el surco gingival encuentra las condiciones para su crecimiento, interaccionando con el huésped produciendo una destrucción lenta pero constante de los tejidos del periodonto. Su predominancia ha sido considerada como un factor de riesgos para enfermedades sistémicas inflamatorios, como la del infarto de miocardio. Aunque su susceptibilidad a una diversidad de fármacos hace posible su manejo con antimicrobianos previa remoción mecánica de biofilm subgingival. En conclusión la revisión abarca diversas características de la bacteria, que nos unen al consenso de que Porphyromonas gingivalis es el patógeno de mayor relevancia en la periodontitis crónica, así como su presencia en diversas formas de patologías periodontales.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Luo, Shiyin, Tong Xu, Qifan Zheng, Aijia Jiang, Jiahui Zhao, Yue Ying, Nan Liu, Yaping Pan y Dongmei Zhang. "Mitochondria: An Emerging Unavoidable Link in the Pathogenesis of Periodontitis Caused by Porphyromonas gingivalis". International Journal of Molecular Sciences 25, n.º 2 (6 de enero de 2024): 737. http://dx.doi.org/10.3390/ijms25020737.

Texto completo
Resumen
Porphyromonas gingivalis (P. gingivalis) is a key pathogen of periodontitis. Increasing evidence shows that P. gingivalis signals to mitochondria in periodontal cells, including gingival epithelial cells, gingival fibroblast cells, immune cells, etc. Mitochondrial dysfunction affects the cellular state and participates in periodontal inflammatory response through the aberrant release of mitochondrial contents. In the current review, it was summarized that P. gingivalis induced mitochondrial dysfunction by altering the mitochondrial metabolic state, unbalancing mitochondrial quality control, prompting mitochondrial reactive oxygen species (ROS) production, and regulating mitochondria-mediated apoptosis. This review outlines the impacts of P. gingivalis and its virulence factors on the mitochondrial function of periodontal cells and their role in periodontitis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Kim, Hey-Min, Christina Magda Rothenberger y Mary Ellen Davey. "Cortisol Promotes Surface Translocation of Porphyromonas gingivalis". Pathogens 11, n.º 9 (27 de agosto de 2022): 982. http://dx.doi.org/10.3390/pathogens11090982.

Texto completo
Resumen
Studies are showing that the stress hormone cortisol can reach high levels in the gingival sulcus and induce shifts in the metatranscriptome of the oral microbiome. Interestingly, it has also been shown that cortisol can influence expression levels of Type IX Secretion System (T9SS) genes involved in gliding motility in bacteria belonging to the phylum Bacteroidota. The objective of this study was to determine if cortisol impacts gene expression and surface translocation of Porphyromonas gingivalis strain W50. To conduct these experiments, P. gingivalis was stabbed to the bottom of soft agar plates containing varying cortisol concentrations (0 μM, 0.13 μM, 1.3 μM, and 13 μM), and surface translocation on the subsurface was observed after 48 h of incubation. The results show that when grown with certain nutrients, i.e., in rich medium with the addition of sheep blood, lactate, or pyruvate, cortisol promotes migration of P. gingivalis in a concentration-dependent manner. To begin to examine the underlying mechanisms, quantitative PCR was used to evaluate differential expression of genes when P. gingivalis was exposed to cortisol. In particular, we focused on differential expression of T9SS-associated genes, including mfa5, since it was previously shown that Mfa5 is required for cell movement and cell-to-cell interactions. The data show that mfa5 is significantly up-regulated in the presence of cortisol. Moreover, an mfa5 deletion mutant showed less surface translocation compared to the wild-type P. gingivalis in the presence of cortisol, and the defects of the mfa5 deletion mutant were restored by complementation. Overall, cortisol can stimulate P. gingivalis surface translocation and this coincides with higher expression levels of T9SS-associated genes, which are known to be essential to gliding motility. Our findings support a high possibility that the stress hormone cortisol from the host can promote surface translocation and potentially virulence of P. gingivalis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Khasyiun, Muhammad Rijal dermawan, Mudyawati Kamaruddin y Steffi Triany Arnov. "UJI EFEKTIVITAS EKSTRAK ETANOL BUAH JAMBU BIJI MERAH (Psidium guajava L.) DALAM MENGHAMBAT PERTUMBUHAN BAKTERI Porphyromonas Gingivalis PENYEBAB PERIODONTITIS". Indonesian Journal of Dentistry 3, n.º 1 (23 de junio de 2023): 31. http://dx.doi.org/10.26714/ijd.v3i1.11991.

Texto completo
Resumen
Pendahuluan: Penyakit periodontal bentuk gangguan Kesehatan gigi dan mulut yang memiliki prevalensi cukup besar di Indonesia sebesar 74,1%. Peyakit periodontal jika dibiarkan akan menimbulkan kehilangan perlekatan dan pembentukan poket atau kantung periodontal yang diakibatkan oleh perkembangan bakteri patogen. Porphyromonas gingivalis merupakan bakteri terbanyak penyebab periodontitis kronis yaitu mencapai 96,2%. Perawatan mekanik yang dapat diberikan adalah scaling, root planing, dan kuretase Selain itu, perawatan periodontitis dengan menggunakan terapi medikamen antibiotik. Psidium guajava (jambu biji) adalah tanaman fitoterapi yang biasa disebut jambu biji, yang terbukti memiliki efek antibakteri. Tujuan: Mengetahui efektivitas ekstrak buah jambu biji merah (Psidium guajava L.) terhadap bakteri Porphyromonas gingivalis. Metode: Penelitian ini merupakan penelitian eksperimental laboratoris dengan rancangan post-test only control group design. Variabel bebas dalam penelitian ini adalah ekstrak buah jambu biji merah (Psidium guajava L.) konsentrasi 5%, 15%, 25%, 35% dan 45%. Variabel terikat dalam penelitian ini adalah daya hambat bakteri Porphyromonas gingivalis. Hasil: Ekstrak etanol buah jambu biji merah (Psidium guajava L.) konsentrasi 5%, 15%, 25%, 35%, 45% dan Metronidazole 500 mg efektif dalam menghambat pertumbuhan bakteri Porphyromonas gingivalis. Kesimpulan: Konsentrasi efektif daya hambat maksimal ekstrak etanol buah jambu biji terhadap bakteri Porphyromonas gingivalis adalah 45%.Kata kunci: Ekstrak etanol buah jambu biji (Psidium guajava l.), Porphyromonas gingivalis, periodontitis kronis, daya hambat
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Trocha–Mendoza, María José y Catalina María Arévalo–Caro. "Relación entre Porphyromonas gingivalis y diabetes mellitus tipo 2: revisión sistemática exploratoria". Acta Odontológica Colombiana 11, n.º 2 (1 de julio de 2021): 10–24. http://dx.doi.org/10.15446/aoc.v11n2.95219.

Texto completo
Resumen
Objetivo: analizar la relación entre Porphyromonas gingivalis y diabetes mellitus tipo 2, mediante una revisión sistemática exploratoria de la literatura científica publicada entre los años 2000 y 2019. Métodos: se utilizaron los siguientes términos MeSH: Porphyromonas gingivalis, diabetes mellitus type 2, periodontal disease, non insulin dependent diabetes. Se obtuvieron 346 resultados, de los cuales se seleccionaron 41 por título, se excluyeron 11 posterior a la lectura del abstract e introducción y 19 después de la lectura del texto completo. Finalmente, se incluyeron 11 artículos. Resultados: el lipopolisacárido de Porphyromonas gingivalis y su fimbria tipo II se relacionan con una mayor producción de citoquinas proinflamatorias como IL-6 y TNF-α, las cuales afectan las vías de señalización de la glucosa y se relacionan con insulinoresistencia. La dipeptidil peptidasa 4 de Porphyromonas gingivalis puede participar en la degradación de incretinas, lo cual afecta la producción de insulina en el huésped y promueve estados de hiperglicemia. El interactoma de Porphyromonas gingivalis puede superponerse con genes involucrados en resistencia a la insulina y diabetes mellitus tipo 2. Conclusión: según la evidencia científica publicada existen factores de virulencia y mecanismos por los cuales la Porphyromonas gingivalis influye en el desarrollo de insulinorresistencia y diabetes mellitus tipo 2.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Drucker, David B., Ali M. Tavana, Valerie Boote y Daria N. Love. "Is Porphyromonas gingivalis heterogeneous?" Reviews in Medical Microbiology 8 (1997): S13. http://dx.doi.org/10.1097/00013542-199712001-00004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Igboin, C. O., A. L. Griffen y E. J. Leys. "Porphyromonas gingivalis Strain Diversity". Journal of Clinical Microbiology 47, n.º 10 (12 de agosto de 2009): 3073–81. http://dx.doi.org/10.1128/jcm.00569-09.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Muharammy, Fairuza, Rizanda Machmud y Surya Nelis. "PERBEDAAN DAYA HAMBAT OBAT ANESTESI LOKAL LIDOCAINE 2% DAN ARTICAINE 4% TERHADAP PERTUMBUHAN BAKTERI Porphyromonas gingivalis SECARA IN VITRO". Andalas Dental Journal 4, n.º 2 (3 de diciembre de 2016): 89–97. http://dx.doi.org/10.25077/adj.v4i2.58.

Texto completo
Resumen
Porphyromonas gingivalis is a gram-negative anaerobic bacteria which is an oral normal microflora located in subgingival area.This bacteria can cause inflamation and delayed wound healing after dental invasive procedures. Lidocaine 2% and articaine 4% are the most used anaesthetic agents in dentistry. Both of these agents have been studied for having antibacterial effect in certain concentrations. This will open the possibility of using local anaesthetic agents as antibacterial agent in dental invasive procedures to prevent infection after procedures. The purpose of this study is to analyze the difference inhibition of local anaesthetics drug lidocaine 2% and articaine 4% on the growth of Porphyromonas gingivalis bacteria in vitro. The study subject was pure culture of Porphyromonas gingivalis ATCC 33277 divided by two group, one group with lidocaine 2% and other with articaine 4%. This study was experimental laboratory with post test only control group design. The mean of inhibitions were obtained by measuring inhibition zone formed around paper discs with caliper in milimeter scale. The result showed Inhibition rate lidocaine 2% had greater rate than articaine 4% in inhibiting the growth of Porphyromonas gingivalis bacteria in vitro.The conclusion was lidocaine 2% was more effective than articaine 4% in inhibiting the growth of Porphyromonas gingivalis bacteria in vitro. Keywords: Antibacteria, Local anaesthetic, Lidocaine 2%, Articaine 4%, Porphyromonas gingivalis
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Khotimah, Destri Khusnul, I. Wayan Arya Krishnawan Firdaus y Maharani Laillyza Apriasari. "THE INHIBITORY ACTIVITY OF KELAKAI LEAF EXTRACT AGAINST THE GROWTH OF Porphyromonas gingivalis ATCC® 33277™". Dentino : Jurnal Kedokteran Gigi 5, n.º 2 (15 de agosto de 2020): 104. http://dx.doi.org/10.20527/dentino.v5i2.8945.

Texto completo
Resumen
ABSTRACTBackground: Chronic periodontitis is an infectious disease that causes damage on periodontal ligament and alveolar bone. The severity of periodontitis is caused by several types of bacterial species which one of them is Porphyromonas gingivalis bacteria with a prevalence of 85% in oral cavity. The extract of kelakai leaf contained antibacterial in the form of flavonoid, alkaloid, tannin, and steroid. Flavonoid consists of some chemical compounds which is one of them is quercetin. The level of quercetin in kelakai leaf is 503.56 mgQE/g. From some secondary metabolites, kelakai leaf has inhibitory power toward gram negative bacterial, Porphyromonas gingivalis. Objective: This research was intended to know the activity of inhibitory power of kelakai leaf toward Porphyromonas gingivalis bacteria. Method: This research was an experimental research consisted of 5 experimental groups that were group of kelakai leaf extract on the concentrations of 100 mh/ml, 75 mg/ml, 50mg/ml, and 25 mg/ml and the control group (0.2% chlorhexidine). Each treatment was done in 4 repetitions. The test of inhibitory power used diffusion method by measuring the inhibitory zone around the growth of Porphyromonas gingivalis on Mueller Hinton Agar media. The data were analyzed by using One Way Anova 95% and then continued with LSD. Results: Based on the LSD test, it was known that the extract of Kelakai leaf had inhibitor power activity toward Porphyromonas gingivalis. The highest inhibitory zone was on the concentration of 100 mg/ml with inhibitory zone of 14.61 mm. Conclusion: The extract of kelakai leaf had inhibitory power activity toward Porphyromonas gingivalis bacteria in vitro. Keywords: 0.2% chlorhexidine, Diffusion method, Inhibitory power, Stenochlaena palustris extract, Porphyromonas gingivalis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Wedarti, Yoifah Rizka, Laurencia Isabella Loekito, Fani Pangabdian y Dwi Andriani. "Potensi kitosan kepiting rajungan (Portunus pelagicus) dalam penghambatan pembentukan biofilm Porphyromonas gingivalis dan pertumbuhan Candida albicansPotential of flower crab (Portunus pelagicus) chitosan in the inhibition of Porphyromonas gingivalis and Candida albicans biofilm". Padjadjaran Journal of Dental Researchers and Students 4, n.º 2 (31 de octubre de 2020): 121. http://dx.doi.org/10.24198/pjdrs.v4i2.26636.

Texto completo
Resumen
Pendahuluan: Pembentukan biofilm sangat penting dalam patogenesis periodontitis. Porphyromonas gingivalis merupakan bakteri yang banyak ditemukan pada plak gigi dan memiliki kemampuan membentuk biofilm demikian juga Candida albicans memiliki faktor virulensi yang dapat membantu kolonisasi dan proliferasi bakteri di dalam poket periodontal. Ekstrak kitosan kepiting rajungan (Portunus pelagicus) mempunyai potensi antimikrobial yang dapat digunakan sebagai alternatif terapi. Tujuan penelitian ini adalah untuk menganalisis potensi kitosan kepiting rajungan (Portunus pelagicus) dalam penghambatan biofilm Porphyromonas gingivalis dan Candida albicans. Metode: Jenis penelitian adalah eksperimental murni. Penelitian ini menggunakan ekstrak kitosan kepiting rajungan (Portunus pelagicus) terhadap biofilm Porphyromonas gingivalis dan biofilm Candida albicans. Dibagi menjadi 4 kelompok, di mana tiap kelompok terdiri dari 4 sampel. Kelompok K+ (kelompok kontrol positif), P1(kitosan 0,25%), P2 (kitosan 0,5%), P3 (kitosan 1%). Penghambatan biofilm ditentukan dengan menggunakan metode microtiter plate yang menghasilkan nilai optical density kemudian dihitung dengan menggunakan rumus persen penghambatan. Analisis data menggunakan one-way ANOVA diikuti dengan uji LSD. Hasil: Terdapat perbedaan yang signifikan penghambatan biofilm dari kitosan Portunus pelagicus terhadap Porphyromonas gingivalis (p<0,05) antara kelompok, kecuali K + dengan P3. Sedangkan untuk penghambatan Candida albicans menunjukkan bahwa ada perbedaan yang signifikan dalam persentase penghambatan biofilm (p<0,05), antara kelompok K+ dengan P2 dan P3; kelompok P1 dengan P2 dan P3; kelompok P2 dengan P3. Simpulan: Kitosan Portunus pelagicus memiliki potensi dalam menghambat pembentukan biofilm Porphyromonas gingivalis dan pertumbuhan Candida albicans. Kitosan Portunus pelagicus 1% memiliki efek antimikrobial terbesar pada biofilm.Kata kunci: Biofilm, Porphyromonas gingivalis, Candida albicans, kitosan portunus pelagicus, periodontitis. ABSTRACTIntroduction: Biofilm formation is important in periodontitis pathogenesis. Porphyromonas gingivalis and Candida albicans, which are found in dental plaque and can form a biofilm, have virulence factor that facilitates the bacterial colonisation and proliferation in periodontal pockets. Chitosan extract of flower crab (Portunus pelagicus) has antimicrobial potential which can be used as an alternative therapy. The objective of this research was to analyse the potential of flower crab (Portunus pelagicus) chitosan in the inhibition of Porphyromonas gingivalis and Candida albicans biofilms. Methods: This research was a pure experimental laboratory. This study used flower crab (Portunus pelagicus) chitosan to inhibit the biofilm formation of Porphyromonas gingivalis and Candida albicans. The subjects were divided into four groups, where each group consisted of 4 samples. The K+ (positive control group), P1 (0.25% chitosan), P2 (0.5% chitosan), and P3 (1% chitosan). The biofilm inhibition was determined using the microtiter plate methods, which results in the value of optical density, then calculated using the inhibition formula percentage. Data analysis was conducted using the one-way ANOVA followed by the LSD test. Results: There were significant differences in the Porphyromonas gingivalis biofilm inhibition between groups (p < 0.05), except in group K+ with P3. Whereas for Candida albicans biofilm inhibition showed no significant difference (p < 0.05) between group K+ with P2 and P3; group P1 with P2 and P3; and group P2 with P3. Conclusion: The chitosan of flower crab (Portunus pelagicus) has the potential in inhibiting the biofilm formation of Porphyromonas gingivalis and Candida albicans. The highest antibacterial effect on the biofilm formation is shown in the concentration of 1%.Keywords: Biofilm, Porphyromonas gingivalis, Candida albicans, chitosan, Portunus pelagicus, periodontitis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Dwipriastuti, Devi, R. Rama Putranto y Welly Anggarani. "PERBEDAAN EFEKTIVITAS CHLORHEXIDINE GLUKONAT 0,2% DENGAN TEH HIJAU (CAMELLIA SINENSIS) TERHADAP JUMLAH PORPHYROMONAS GINGIVALIS". ODONTO : Dental Journal 4, n.º 1 (1 de julio de 2017): 50. http://dx.doi.org/10.30659/odj.4.1.50-54.

Texto completo
Resumen
Background: Periodontitis is a periodontal inflammation caused by plaque that contains pathogens, Porphyromonas gingivalis is one of them. Chlorhexidine therapy used to reduce the number of pathogenic bacteria causing periodontitis. Green tea contains polyphenols such as epigallocatechin-3-gallic as antibacterial agent that can kill the bacteria Porphyromonas gingivalis. This study aims to determine differences in the effectiveness of chlorhexidine gluconate 0.2% with green tea (Camellia sinensis) various concentrations to decrease the amount of bacteria Porphyromonas gingivalis.Method: This research was experimental with post test only design. Method used in antibacterial test was a drop plate misra. The experimental group consisted of six groups: chlorhexidine gluconate 0.2% and green tea group with a concentration of 100%, 75%, 50%, 25% and 12.5%. minimum bactericidal concentrations againts Porphyromonas gingivalis was evidenced by counting the number of colonies that formed on agar. Analysis data was using One Way ANOVA continued by Post hoc tests Tamhane.Result: The results showed that chlorhexidine gluconate 0.2% with green tea effective to decrease the amount of bacteria Porphyromonas gingivalis(ANOVA p <0.05). The results between the groups showed green tea 100%, 75% and 25%, have same effect compared to chlorhexidine gluconate 0.2% in reducing Porphyromonas gingivalis.Conclusion: In this experiment showed that chlorhexidine gluconate 0.2% and green tea extract 100%, 75%, 50%, 25% and 12.5% were able to decrease the amount of Porphyromonas gingivalis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Sylvana, Dini, Masyhudi Amir, Cicih Bhakti Purnamasari, Abdillah Iskandar y Verry Asfirizal. "Antibacterial activity of ethanol extract of Beluntas leaves on Streptococcus mutans, Porphyromonas gingivalis, and Enterococcus faecalis". Padjadjaran Journal of Dentistry 33, n.º 3 (1 de diciembre de 2021): 191. http://dx.doi.org/10.24198/pjd.vol33no3.19133.

Texto completo
Resumen
Introduction: Individuals with poor oral health have a greater risk factor for systemic diseases. Caries, periodontal disease, and root canal infections are a common dental and oral diseases caused by dominance of Streptococcus mutans, Porphyromonas gingivalis, and Enterococcus faecalis bacteria (S. mutans, P. gingivalis, and E. faecalis). An alternative way to prevent dental and oral diseases is to use herbal medicine as one of the active ingredients for mouthwash or toothpaste. One of the herbs that can be used is Beluntas leaves (Pluchea indica (L.) Less leaves). The objective of study was to analyze the antibacterial activity of ethanol extract of Pluchea indica (L.) Less leaves on the growth of Streptococcus mutans, Porphyromonas gingivalis, and Enterococcus faecalis. Methods: This research was experimental laboratory with post test only control design, using disk diffusion method. There were five concentrations (2.5, 3.5, 4.5, 5.5 and 6.5%, positive controls, and negative controls. Data analysis was performed using One Way Anova and post Hoc test. Results: The ethanol extract of Pluchea indica (L.) Less leaves has moderate-strong antibacterial activity against Streptococcus mutans, Porphyromonas gingivalis, and Enterococcus faecalis. The largest diameter of inhibitory zone in Enterococcus faecalis at a concentration of 6.5% followed by Streptococcus mutans and Porphyromonas gingivalis at the same concentration and the smallest diameter of inhibition zone in Porphyromonas gingivalis, followed by Enterococcus faecalis and Streptococcus mutans at 2.5% concentration. Conclusion: The ethanol extract of Pluchea indica (L.) Less leaves with a concentration of 2.5, 3.5, 4.5, 5.5, and 6.5% has antibacterial activity in inhibiting the growth of Streptococcus mutans, Porphyromonas gingivalis, and Enterococcus faecalis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Zhang, Jinrong, Leah Cole, Anna Brown, Bing Ma, Natalie Anosova y Jacqueline McCluskey. "Development of a RANKL ELISPOT assay as a tool for periodontal disease research (TECH2P.913)". Journal of Immunology 194, n.º 1_Supplement (1 de mayo de 2015): 206.23. http://dx.doi.org/10.4049/jimmunol.194.supp.206.23.

Texto completo
Resumen
Abstract Periodontal disease (PD) results from the immune response to the bacterial components of the sub-gingival plaque. PD progresses from gingival inflammation, to bone resorption and ultimately tooth loss. Receptor activator of nuclear factor-kappa B ligand (RANKL) is critical for regulating inflammatory bone resorption. Studies have shown that activated T and B cells are one of the main sources of RANKL in PD. The ELISPOT assay is widely used tool that can measure antigen specific cellular immune responses. We developed a RANKL specific ELISPOT assay for quantifying the number of RANKL secreting cells in the murine Porphyromonas gingivalis induced bone loss model. Various potential positive controls were tested for their ability to induce RANKL secretion including IL-7, ionomycin, LPS, and α-CD3 combined with α-CD28. We found that the combination of α-CD3 and α-CD28 was the most effective positive control for cells collected from either murine lymph nodes or spleens. Gingipains are trypsin-like cysteine proteases and have been implicated as important virulence factors for Porphyromonas gingivalis. When we performed the RANKL ELISPOT using the purified native gingipain complex as the recall antigen, we were able to detect more RANKL secreting cells from the mandibular lymph nodes of Porphyromonas gingivalis challenged animals than in the buffer challenged control animals.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Chaudhuri, Swarnava, Siddharth Pratap, Victor Paromov, Zhijun Li, Chinmay K. Mantri y Hua Xie. "Identification of a Diguanylate Cyclase and Its Role in Porphyromonas gingivalis Virulence". Infection and Immunity 82, n.º 7 (14 de abril de 2014): 2728–35. http://dx.doi.org/10.1128/iai.00084-14.

Texto completo
Resumen
ABSTRACTPorphyromonas gingivalisis a Gram-negative obligate anaerobic bacterium and is considered a keystone pathogen in the initiation of periodontitis, one of the most widespread infectious diseases. Bacterial bis-(3′-5′) cyclic GMP (cyclic di-GMP [c-di-GMP]) serves as a second messenger and is involved in modulating virulence factors in numerous bacteria. However, the role of this second messenger has not been investigated inP. gingivalis, mainly due to a lack of an annotation regarding diguanylate cyclases (DGCs) in this bacterium. Using bioinformatics tools, we found a protein, PGN_1932, containing a GGDEF domain. A deletion mutation in thepgn_1932gene had a significant effect on the intracellular c-di-GMP level inP. gingivalis. Genetic analysis showed that expression of thefimAandrgpAgenes, encoding the major protein subunit of fimbriae and an arginine-specific proteinase, respectively, was downregulated in thepgn_1932mutant. Correspondingly, FimA protein production and the fimbrial display on the mutant were significantly reduced. Mutations in thepgn_1932gene also had a significant impact on the adhesive and invasive capabilities ofP. gingivalis, which are required for its pathogenicity. These findings provide evidence that the PGN_1932 protein is both responsible for synthesizing c-di-GMP and involved in biofilm formation and host cell invasion byP. gingivalisby controlling the expression and biosynthesis of FimA.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Fitria, Novita Nanda, Beta Widya Oktiani y Aulia Azizah. "ANTIBACTERIAL EFFECTIVENESS TEST OF KECAPI LEAVES EXTRACTS (Sandoricum koetjape) AGAINST THE GROWTH OF Porphyromonas gingivalis". Dentino: Jurnal Kedokteran Gigi 9, n.º 1 (1 de marzo de 2024): 18. http://dx.doi.org/10.20527/dentino.v9i1.18855.

Texto completo
Resumen
Background: Chronic periodontitis is a disease of the oral cavity that is influenced by the presence of plaque bacteria caused by Porphyromonas gingivalis which can cause chronic infection of the periodontal tissue. Kecapi leaf (Sandoricum koetjape) extract contains active compounds in the form of flavonoids, saponins, alkaloids, steroids, phenolics, and triterpenoids which function as antibacterial against the growth of Porphyromonas gingivalis. Kecapi leaf extract is used as an alternative to using herbal gluconate to prevent infection caused of Porphyromonas gingivalis. Purpose: To determine the antibacterial effectiveness of kecapi leaf extract against bacterial growth of Porphyromonas gingivalis. Methods: This study used a pure experimental research (true experimental) with post-test only with control design, consists of 7 treatment groups, including: concentrated kecapi leaf extract 5%, 10%, 15%, 25%, 50%, chlorhexidine gluconate 0.2% as positive control, and distilled water as negative control. It was repeated 7 times, the antibacterial effectiveness was assessed from Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) on BHIB and NA media by dilution method. Results: MIC on kecapi leaf extract at a concentration of 5% showed the smallest result of -0.147 and the MBC value at a concentration of 50% did not show the growth of bacterial colonies. Conclusion: Kecapi leaf extract with concentrations of 5%, 10%, 15%, 25%, 50%, and positive control was effective in inhibiting and killing bacterial growth of Porphyromonas gingivalis. Keywords: Antibacterial, Kecapi leaf extract, Porphyromonas gingivalis
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

MORIOKA, Masami, Mika UEDA, Kanako YAMATO, Hiroyuki HAYASHI, Daisuke HINODE, Atsushi NAGATA y Ryo NAKAMURA. "Aggregation of Human Gingival Fibroblasts by Porphyromonas gingivalis." JOURNAL OF DENTAL HEALTH 44, n.º 1 (1994): 116–21. http://dx.doi.org/10.5834/jdh.44.116.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Mei, Feng, Mengru Xie, Xiaofei Huang, Yanlin Long, Xiaofeng Lu, Xiaoli Wang y Lili Chen. "Porphyromonas gingivalis and Its Systemic Impact: Current Status". Pathogens 9, n.º 11 (13 de noviembre de 2020): 944. http://dx.doi.org/10.3390/pathogens9110944.

Texto completo
Resumen
The relationship between periodontitis and systemic diseases, notably including atherosclerosis and diabetes, has been studied for several years. Porphyromonas gingivalis, a prominent component of oral microorganism communities, is the main pathogen that causes periodontitis. As a result of the extensive analysis of this organism, the evidence of its connection to systemic diseases has become more apparent over the last decade. A significant amount of research has explored the role of Porphyromonas gingivalis in atherosclerosis, Alzheimer’s disease, rheumatoid arthritis, diabetes, and adverse pregnancy outcomes, while relatively few studies have examined its contribution to respiratory diseases, nonalcoholic fatty liver disease, and depression. Here, we provide an overview of the current state of knowledge about Porphyromonas gingivalis and its systemic impact in an aim to inform readers of the existing epidemiological evidence and the most recent preclinical studies. Additionally, the possible mechanisms by which Porphyromonas gingivalis is involved in the onset or exacerbation of diseases, together with its effects on systemic health, are covered. Although a few results remain controversial, it is now evident that Porphyromonas gingivalis should be regarded as a modifiable factor for several diseases.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Suzuki, Mitsuo, Toshizo Toyama, Kiyoko Watanabe, Haruka Sasaki, Shuta Sugiyama, Fumihiko Yoshino, Ayaka Yoshida et al. "Ameliorating Effects of Jixueteng in a Mouse Model of Porphyromonas gingivalis-Induced Periodontitis: Analysis Based on Gingival Microcirculatory System". Natural Product Communications 13, n.º 12 (diciembre de 2018): 1934578X1801301. http://dx.doi.org/10.1177/1934578x1801301230.

Texto completo
Resumen
Jixueteng, the dried stem of Spatholobus suberectus Dunn (Leguminosae), is a traditional Chinese herbal medicine that promotes blood circulation and can be used to treat blood stasis. In this study, we aimed to investigate the potential of Jixueteng as a preventive and therapeutic drug for periodontitis. We investigated the inhibitory effects of Jixueteng on Porphyromonas gingivalis ( P. gingivalis)-induced gingival circulatory disturbances in mice. Seventy-two male C57BL/6N mice (4-week-old) were randomly divided into the following four groups of 12 mice each. Group 1 served as the P. gingivalis noninfected control (control group). Group 2 was administered Jixueteng extract in drinking water to P. gingivalis noninfected control mice. Group 3 was infected orally with P. gingivalis; and group 4 was administered Jixueteng extract in drinking water and then infected with P. gingivalis. To evaluate the effect of Jixueteng on gingival microcirculation systems, we examined gingival blood flow (GBF) in oral microcirculation in vivo in a mouse model of periodontitis. Gingival reactive hyperemia (GRH) was determined using laser Doppler flowmetry. GRH was elicited by the release of occlusive gingival compression by the laser Doppler probe (diameter 1.0 mm) for 1 min. GRH was estimated by basal blood flow, maximum response (Peak), the time taken for the maximum response to fall to one half (T1/2) and increased total amount of blood flow (Mass). Furthermore, to determine the effect of an oral application of P. gingivalis and/or Jixueteng on GBF and gingival microvessel ultrastructure, morphological analysis of gingival microvessels was performed by using a vascular resin cast model. Administration of Jixueteng to P. gingivalis-infected animals significantly reduced GRH, especially T1/2 and Mass, compared to that in P. gingivalis-infected animals. Alternatively, in the morphological analysis, reduction of the gingival capillary network which resulted from P. gingivalis-infection was improved by Jixueteng administration. Since Jixueteng ameliorates P. gingivalis infection-induced gingival circulatory disturbance, it may be useful in the treatment of P. gingivalis-induced periodontitis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Andrian, Elisoa, Daniel Grenier y Mahmoud Rouabhia. "In Vitro Models of Tissue Penetration and Destruction by Porphyromonas gingivalis". Infection and Immunity 72, n.º 8 (agosto de 2004): 4689–98. http://dx.doi.org/10.1128/iai.72.8.4689-4698.2004.

Texto completo
Resumen
ABSTRACT Porphyromonas gingivalis is a gram-negative anaerobic bacterium that is considered the key etiologic agent of chronic periodontitis. Arg- and Lys-gingipain cysteine proteinases produced by P. gingivalis are key virulence factors and are believed to be essential for significant tissue component degradation, leading to host tissue invasion by periodontopathogens. Two in vitro models were used to determine the extent to which P. gingivalis can reach connective tissue. The tissue penetration potential of P. gingivalis was first investigated by using an engineered human oral mucosa model composed of normal human epithelial cells and fibroblasts. Internalized bacteria were assessed by transmission electron microscopy. Bacteria were observed within multilayered gingival epithelial cells and in the space between the stratified epithelium and the lamina propria. A gingipain-null mutant strain of P. gingivalis was found to be less potent in penetrating tissue than the wild-type strain. Proinflammatory responses to P. gingivalis infection were evaluated. P. gingivalis increased the secretion of interleukin-1β, interleukin-6, interleukin-8, and tumor necrosis factor alpha. In the second part of the study, the contribution of P. gingivalis gingipains to tissue penetration was investigated by using a reconstituted basement membrane model (Matrigel). The penetration of 14C-labeled P. gingivalis cells through Matrigel was significantly reduced when leupeptin, a specific inhibitor of Arg-gingipain activity, was added or when a gingipain-null mutant was used. The results obtained with these two relevant models support the capacities of P. gingivalis to infiltrate periodontal tissue and to modulate the proinflammatory response and suggest a critical role of gingipains in tissue destruction.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Eskan, Mehmet A., George Hajishengallis y Denis F. Kinane. "Differential Activation of Human Gingival Epithelial Cells and Monocytes by Porphyromonas gingivalis Fimbriae". Infection and Immunity 75, n.º 2 (21 de noviembre de 2006): 892–98. http://dx.doi.org/10.1128/iai.01604-06.

Texto completo
Resumen
ABSTRACT Humans develop periodontitis in response to challenge by microbial dental plaque. Inflammation begins after perturbation of gingival epithelial cells by subgingival bacteria interacting through pattern-recognition receptors, including the Toll-like receptors (TLR). Porphyromonas gingivalis is a major periodontopathogen that interacts with epithelial cells through its cell surface fimbriae (FimA), leading to colonization and/or invasion. Previous work by our group has established membrane CD14 as an essential coreceptor for TLR2-mediated activation of transfected cell lines by P. gingivalis FimA. We have shown that gingival epithelial cells express TLR2 but not CD14 on their cell surfaces. We thus speculated that P. gingivalis FimA does not readily activate epithelial innate immune responses but rather functions to promote P. gingivalis colonization in the absence of a vigorous FimA-induced response. This hypothesis was verified by the findings that primary human gingival epithelial cells responded poorly to FimA in terms of interleukin (IL)-6, IL-8, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor alpha responses, in stark contrast to the marked response to other TLR2 agonists (Pam3Cys, FSL-1) that are not strictly dependent on CD14. On the other hand, CD14-expressing human primary monocytes responded with high levels of the same cytokines to both FimA and the control TLR2 agonists. The gingival epithelial cells failed to respond to FimA even in the presence of exogenously added soluble CD14. These data indicate that the gingival epithelial cell hyporesponsiveness to FimA is attributable to the lack of membrane-expressed but not soluble CD14. In conclusion, P. gingivalis FimA differentially activates human monocytes and epithelial cells, perhaps reflecting different tactics used by P. gingivalis when interacting with different host cell types or a host strategy to limit inflammation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Luthfiyani, Anisa, Peni Pujiastuti y Melok Aris W. "Daya Antibakteri Ekstrak Daun Seledri (Apium graveolens L.) terhadap Porphyromonas gingivalis". STOMATOGNATIC - Jurnal Kedokteran Gigi 16, n.º 2 (10 de octubre de 2019): 53. http://dx.doi.org/10.19184/stoma.v16i2.23092.

Texto completo
Resumen
Background: celery leaves contain antibacterial substances that can be used as medicine. These contents include flavonoids, saponins and tannins. Purpose: the aim of this study was to determine the antibacterial effect of celery leaves (Apium graveolens L.) on the growth of Porphyromonas gingivalis (P. gingivalis). Methods: celery leaves were extracted by maceration method with 96% ethanol. The antibacterial test method against P. gingivalis using the well diffusion method on BHI-A media. The concentrations of celery leaf extract used in this study were 6.25%, 12.5%, 25%, 50% and 100%. Result: The results showed that celery leaves extract (Apium graveolens L.) didn’t have the ability to inhibit the growth of Porphyromonas gingivalis. Conclusion: celery leaves didn’t have antibacterial effect against Porphyromonas gingivalis in 6,25%, 12.5%, 25%, 50% and 100% concentrations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Yilmaz, Özlem, Patrick A. Young, Richard J. Lamont y George E. Kenny. "Gingival epithelial cell signalling and cytoskeletal responses to Porphyromonas gingivalis invasion". Microbiology 149, n.º 9 (1 de septiembre de 2003): 2417–26. http://dx.doi.org/10.1099/mic.0.26483-0.

Texto completo
Resumen
Porphyromonas gingivalis, an oral pathogen, can internalize within primary gingival epithelial cells (GECs) through an invasion mechanism mediated by interactions between P. gingivalis fimbriae and integrins on the surface of the GECs. Fimbriae–integrin-based signalling events were studied by fluorescence microscopy, and the subcellular localization of integrin-associated signalling molecules paxillin and focal adhesion kinase (FAK), and the architecture of the actin and microtubule cytoskeleton were examined. GECs infected with P. gingivalis for 30 min demonstrated significant redistribution of paxillin and FAK from the cytosol to cell peripheries and assembly into focal adhesion complexes. In contrast, a fimbriae-deficient mutant of P. gingivalis did not contribute substantially to activation of paxillin or FAK. After 24 h, the majority of paxillin and FAK had returned to the cytoplasm with significant co-localization with P. gingivalis in the perinuclear region. Wild-type P. gingivalis induced nucleation of actin filaments forming microspike-like protrusions and long stable microfilaments distributed throughout the cells. Fimbriae mutants promoted a rich cortical actin meshwork accompanied by membrane ruffling dispersed along the cell membrane. Remarkable disassembly and nucleation of the actin and microtubule filamentous network was observed following 24 h infection with either wild-type or fimbriae-deficient mutants of P. gingivalis. The results show that fimbriated P. gingivalis cells induce formation of integrin-associated focal adhesions with subsequent remodelling of the actin and tubulin cytoskeleton.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Hepitaria, Nova Andriani, Indeswati Diyatri, Markus Budi Rahardjo y Rini Devijanti Ridwan. "The potency of Immunoglobulin Y anti Porphyromonas gingivalis to inhibit the adherence ability of Porphyromonas gingivalis on enterocytes". Dental Journal (Majalah Kedokteran Gigi) 53, n.º 1 (31 de marzo de 2020): 20. http://dx.doi.org/10.20473/j.djmkg.v53.i1.p20-23.

Texto completo
Resumen
Background: Pophyromonas gingivalis (P. gingivalis) bacteria are the main type of bacterium that cause chronic periodontitis. Immunoglobulin Y (IgY) is a type of immunoglobulin found in poultry, such as chickens and birds. IgY can be used as an alternative method of preventing the accumulation of plaque that causes chronic periodontitis. Purpose: To determine the ability of IgY anti P. gingivalis to inhibit adherence of P. gingivalis. Methods: The samples were divided into eight groups, each group containing 10 ml of IgY anti P. gingivalis and 50 ml of enterocyte cells. The control group contained 50 ml of IgY anti P. gingivalis, and 50 ml of enterocyte cells. Serial dilution was carried out to the first seven groups, with the first group containing 90 ml phosphate-buffered saline (PBS) and 10 ml IgY anti P. gingivalis, and the second to seventh groups containing 50 ml PBS before adding 50 ml of enterocyte cells and 50 ml of bacterial suspension per group. The number of bacteria was calculated as an adherence index value using a light microscope. Results: This study shows that IgY anti P. gingivalis significantly reduces the adherence index value of P. gingivalis. Conclusion: IgY anti P. gingivalis has potency to inhibit the adherence of P. gingivalis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Muharammy, Fairuza, Rizanda Machmud y Surya Nelis. "Perbedaan Daya Hambat Obat Anestesi Lokal Lidocaine 2% dan Articaine 4% Terhadap Pertumbuhan Bakteri Porphyromonas Gingivalis Secara In Vitro". Andalas Dental Journal 4, n.º 2 (1 de diciembre de 2016): 79–87. http://dx.doi.org/10.25077/adj.v4i2.159.

Texto completo
Resumen
Porphyromonas gingivalis is a gram-negative anaerobic bacteria which is an oral normal microflora located in subgingival area.This bacteria can cause inflamation and delayed wound healing after dental invasive procedures. Lidocaine 2% and articaine 4% are the most used anaesthetic agents in dentistry. Both of these agents have been studied for having antibacterial effect in certain concentrations. This will open the possibility of using local anaesthetic agents as antibacterial agent in dental invasive procedures to prevent infection after procedures. The purpose of this study is to analyze the difference inhibition of local anaesthetics drug lidocaine 2% and articaine 4% on the growth of Porphyromonas gingivalis bacteria in vitro. The study subject was pure culture of Porphyromonas gingivalis ATCC 33277 divided by two group, one group with lidocaine 2% and other with articaine 4%. This study was experimental laboratory with post test only control group design. The mean of inhibitions were obtained by measuring inhibition zone formed around paper discs with caliper in milimeter scale. The result showed Inhibition rate lidocaine 2% had greater rate than articaine 4% in inhibiting the growth of Porphyromonas gingivalis bacteria in vitro.The conclusion was lidocaine 2% was more effective than articaine 4% in inhibiting the growth of Porphyromonas gingivalis bacteria in vitro.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Muharammy, Fairuza, Rizanda Machmud y Surya Nelis. "Perbedaan Daya Hambat Obat Anestesi Lokal Lidocaine 2% dan Articaine 4% Terhadap Pertumbuhan Bakteri Porphyromonas Gingivalis Secara In Vitro". Andalas Dental Journal 7, n.º 2 (1 de diciembre de 2019): 104–11. http://dx.doi.org/10.25077/adj.v7i2.159.

Texto completo
Resumen
Porphyromonas gingivalis is a gram-negative anaerobic bacteria which is an oral normal microflora located in subgingival area.This bacteria can cause inflamation and delayed wound healing after dental invasive procedures. Lidocaine 2% and articaine 4% are the most used anaesthetic agents in dentistry. Both of these agents have been studied for having antibacterial effect in certain concentrations. This will open the possibility of using local anaesthetic agents as antibacterial agent in dental invasive procedures to prevent infection after procedures. The purpose of this study is to analyze the difference inhibition of local anaesthetics drug lidocaine 2% and articaine 4% on the growth of Porphyromonas gingivalis bacteria in vitro. The study subject was pure culture of Porphyromonas gingivalis ATCC 33277 divided by two group, one group with lidocaine 2% and other with articaine 4%. This study was experimental laboratory with post test only control group design. The mean of inhibitions were obtained by measuring inhibition zone formed around paper discs with caliper in milimeter scale. The result showed Inhibition rate lidocaine 2% had greater rate than articaine 4% in inhibiting the growth of Porphyromonas gingivalis bacteria in vitro.The conclusion was lidocaine 2% was more effective than articaine 4% in inhibiting the growth of Porphyromonas gingivalis bacteria in vitro.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Romero-Sánchez, Consuelo, Juliette De Avila, Alejandro Ramos-Casallas, Lorena Chila-Moreno, Nathaly Andrea Delgadillo, Philippe Chalem-Choueka, César Pacheco-Tena, Juan Manuel Bello-Gualtero y Wilson Bautista-Molano. "High Levels of Leptin and Adipsin Are Associated with Clinical Activity in Early Rheumatoid Arthritis Patients with Overweight and Periodontal Infection". Diagnostics 13, n.º 6 (16 de marzo de 2023): 1126. http://dx.doi.org/10.3390/diagnostics13061126.

Texto completo
Resumen
Adipokines are associated with the pathogenesis of rheumatoid arthritis (RA) and are potential biomarkers of disease activity, periodontitis, and obesity. The aim of this was to establish the association between adipokine profile, RA disease activity, body mass index, and periodontal infection. This study evaluated 51 patients with early-RA and 51 controls including serum rheumatological markers, adipokine levels, detection of Porphyromonas gingivalis and serum anti-Porphyromonas gingivalis antibodies, clinical and periodontal measurements. Statistical analyses were run with SPSS® V26, with a logistic regression model to confirm associations. The results show high levels of leptin were more frequent in patients (p = 0.001) who simultaneously showed a higher frequency of Porphyromonas gingivalis (p = 0.004). Patients with concomitant presence of Porphyromonas gingivalis, high clinical activity score, and overweight were correlated with high levels of leptin (OR, 7.20; 95% CI, 2.68–19.33; p = 0.0001) and adipsin (OR, 2.69; 95% CI, 1.00–7.28; p = 0.005). The conclusion is that high levels of leptin and adipsin are associated with greater clinical activity in early-RA patients with overweight and periodontal infection, whereby overweight and Porphyromonas gingivalis may enhance RA activity. This may represent a pathological mechanism between these conditions, where adipokines seem to have a key role.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Hasegawa, Yoshiaki, Gena D. Tribble, Henry V. Baker, Jeffrey J. Mans, Martin Handfield y Richard J. Lamont. "Role of Porphyromonas gingivalis SerB in Gingival Epithelial Cell Cytoskeletal Remodeling and Cytokine Production". Infection and Immunity 76, n.º 6 (7 de abril de 2008): 2420–27. http://dx.doi.org/10.1128/iai.00156-08.

Texto completo
Resumen
ABSTRACT The SerB protein of Porphyromonas gingivalis is a HAD family serine phosphatase that plays a critical role in entry and survival of the organism in gingival epithelial cells. SerB is secreted by P. gingivalis upon contact with epithelial cells. Here it is shown by microarray analysis that SerB impacts the transcriptional profile of gingival epithelial cells, with pathways involving the actin cytoskeleton and cytokine production among those significantly overpopulated with differentially regulated genes. Consistent with the transcriptional profile, a SerB mutant of P. gingivalis exhibited defective remodeling of actin in epithelial cells. Interaction between gingival epithelial cells and isolated SerB protein resulted in actin rearrangement and an increase in the F/G actin ratio. SerB protein was also required for P. gingivalis to antagonize interleukin-8 accumulation following stimulation of epithelial cells with Fusobacterium nucleatum. SerB is thus capable of modulating host cell signal transduction that impacts the actin cytoskeleton and cytokine production.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Borsanelli, Ana Carolina, Elerson Gaetti-Jardim Júnior, Christiane Marie Schweitzer, Jürgen Döbereiner y Iveraldo S. Dutra. "Presence of Porphyromonas and Prevotella species in the oral microflora of cattle with periodontitis". Pesquisa Veterinária Brasileira 35, n.º 10 (octubre de 2015): 829–34. http://dx.doi.org/10.1590/s0100-736x2015001000002.

Texto completo
Resumen
Abstratc: Bovine periodontitis is a progressive purulent infectious process associated with the presence of strictly and facultative anaerobic subgingival biofilm and epidemiologically related to soil management in large geographic areas of Brazil. This study aimed to detect species of the genera Porphyromonas and Prevotella, which occurr in periodontal pockets of cattle with lesions deeper than 5mm (n=26) and in gingival sulcus of animals considered periodontally healthy (n=25). Presence of the microorganisms was evaluated by independent-culture medium diagnostic method, using polymerase chain reaction (PCR) with specific primers of Porphyromonas asaccharolytica, P. endodontalis, P. gingivalis, P. gulae, Prevotella buccae, P. intermedia, P. loescheii, P. melaninogenica, P. nigrescens, P. oralis and P. tannerae. The species P. endodontalis (80.7%), P. melaninogenica (73.1%) and P. intermedia (61.5%) were the most predominant in samples of cattle with periodontitis. Regarding non-injured gingival sulcus of cattle, P. endodontalis (40%) and P. loeschei (40%) prevailed. Porphyromonas gingivalis, P. gulae and Prevotella tannerae were not detected in the 51 samples studied. Data evaluation by T test, enabled to verify that ocorrence of Porphyromonas asaccharolytica (p=0.000003), P. endodontalis (p=0.0023), Prevotella buccae (p=0.0017), P. intermedia (p=0.0020), P. melaninogenica (p=0.00006) and P. oralis (p=0.0028) is correlated with bovine periodontitis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Aravindraja, Chairmandurai, Krishna Mukesh Vekariya, Ruben Botello-Escalante, Shaik O. Rahaman, Edward K. L. Chan y Lakshmyya Kesavalu. "Specific microRNA Signature Kinetics in Porphyromonas gingivalis-Induced Periodontitis". International Journal of Molecular Sciences 24, n.º 3 (24 de enero de 2023): 2327. http://dx.doi.org/10.3390/ijms24032327.

Texto completo
Resumen
Porphyromonas gingivalis is one of the major bacteria constituting the subgingival pathogenic polymicrobial milieu during periodontitis. Our objective is to determine the global microRNA (miRNA, miR) expression kinetics in 8- and 16-weeks duration of P. gingivalis infection in C57BL/6J mice and to identify the miRNA signatures at specific time-points in mice. We evaluated differential expression (DE) miRNAs in mandibles (n = 10) using high-throughput NanoString nCounter® miRNA expression panels. The bacterial colonization, alveolar bone resorption (ABR), serum immunoglobulin G (IgG) antibodies, and bacterial dissemination were confirmed. In addition, all the infected mice showed bacterial colonization on the gingival surface, significant increases in ABR (p < 0.0001), and specific IgG antibody responses (p < 0.05–0.001). The miRNA profiling showed 26 upregulated miRNAs (e.g., miR-804, miR-690) and 14 downregulated miRNAs (e.g., miR-1902, miR-1937a) during an 8-weeks infection, whereas 7 upregulated miRNAs (e.g., miR-145, miR-195) and one downregulated miR-302b were identified during a 16-weeks infection. Both miR-103 and miR-30d were commonly upregulated at both time-points, and all the DE miRNAs were unique to the specific time-points. However, miR-31, miR-125b, miR-15a, and miR-195 observed in P. gingivalis-infected mouse mandibles were also identified in the gingival tissues of periodontitis patients. None of the previously identified miRNAs reported in in vitro studies using cell lines (periodontal ligament cells, gingival epithelial cells, human leukemia monocytic cell line (THP-1), and B cells) exposed to P. gingivalis lipopolysaccharide were observed in the in vivo study. Most of the pathways (endocytosis, bacterial invasion, and FcR-mediated phagocytosis) targeted by the DE miRNAs were linked with bacterial pathogen recognition and clearance. Further, eighteen miRNAs were closely associated with the bacterial invasion of epithelial cells. This study highlights the altered expression of miRNA in gingiva, and their expression depends on the time-points of infection. This is the first in vivo study that identified specific signature miRNAs (miR-103 and miR-30d) in P. gingivalis invasion of epithelial cells, establishes a link between miRNA and development of periodontitis and helping to better understand the pathobiology of periodontitis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Sao, Prachi, Yamini Chand, Atul Kumar y Sachidanand Singh. "Potential Drug Target Identification in Porphyromonas gingivalis using In-silico Subtractive Metabolic Pathway Analysis". Bangladesh Journal of Medical Science 20, n.º 4 (18 de junio de 2021): 887–96. http://dx.doi.org/10.3329/bjms.v20i4.54149.

Texto completo
Resumen
Introduction: Porphyromonas Gingivalis (P. gingivalis) a primary periodontal disease pathogen. This bacterium affects sub-gingival tissue and leads to loss of teeth and alveolar bone destruction in the acute stage. In recent years, P. gingivalis is often connected with other diseases such as rheumatoid arthritis, diabetes, Alzheimer’s, and heart disease, though the aetiology is still unclear. Objective: The use of commonly available drugs to treat periodontitis results in various side effects, in particular multi-drug resistant strains. As the development of multidrugresistant strains frequently urges the identification of novel drug targets, the aim of this study is to identify specific targets in the narrow spectrum to combat oral pathogens. Methodology: This study used a comparative and subtractive pathway analysis approach to identify potential drug targets specific to P. gingivalis. Results: The in-silico comparison of the P. gingivalis and Homo sapiens (H. sapiens) metabolic pathways resulted in 13 unique pathogen pathways. A homology search of the 67 enzymes in the unique bacterial pathway using the BLASTp program against the Homo sapiens proteome resulted in fifteen possible targets that are non-homologous to the human proteome. Thirteen genes among 15 potent target encoders are key DEG genes indispensable for P. gingivalis’s survival. A comprehensive analysis of the literature identified three potential therapeutic drug targets. Conclusions: The three most relevant drug targets are Arabinose-5-phosphate isomerase, UDP-2,3-diacylglucosamine hydrolase, and Undecaprenyl diphosphatase. Upon corroboration, these targets may give rise to narrow-spectrum antibiotics that can specificallytreat thedental infection. Bangladesh Journal of Medical Science Vol.20(4) 2021 p.887-896
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Xie, Hua y Cunge Zheng. "OxyR Activation in Porphyromonas gingivalis in Response to a Hemin-Limited Environment". Infection and Immunity 80, n.º 10 (23 de julio de 2012): 3471–80. http://dx.doi.org/10.1128/iai.00680-12.

Texto completo
Resumen
ABSTRACTPorphyromonas gingivalisis a Gram-negative obligately anaerobic bacterium associated with several forms of periodontal disease, most closely with chronic periodontitis. Previous studies demonstrated that OxyR plays an important role in the aerotolerance ofP. gingivalisby upregulating the expression of oxidative-stress genes. Increases in oxygen tension and in H2O2both induce activation of OxyR. It is also known thatP. gingivalisrequires hemin as an iron source for its growth. In this study, we found that a hemin-limited growth environment significantly enhanced OxyR activity inP. gingivalis. As a result, expression ofsod,dps, andahpCwas also upregulated. Using a chromatin immunoprecipitation quantitative PCR (qPCR) analysis, DNA binding of activated OxyR to the promoter of thesodgene was enhanced inP. gingivalisgrown under hemin-limited conditions compared to excess-hemin conditions. Cellular tolerance of H2O2was also enhanced when hemin was limited in the growth medium ofP. gingivalis. Our work supports a model in which hemin serves as a signal for the regulation of OxyR activity and indicates thatP. gingivaliscoordinately regulates expression of oxidative-stress-related genes by this hemin concentration-dependent pathway.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Han, Xiaozhe, Xiaoping Lin, Xiaoqian Yu, Jiang Lin, Toshihisa Kawai, Karen B. LaRosa y Martin A. Taubman. "Porphyromonas gingivalis Infection-Associated Periodontal Bone Resorption Is Dependent on Receptor Activator of NF-κB Ligand". Infection and Immunity 81, n.º 5 (25 de febrero de 2013): 1502–9. http://dx.doi.org/10.1128/iai.00043-13.

Texto completo
Resumen
ABSTRACTPorphyromonas gingivalisis one of the oral microorganisms associated with human chronic periodontitis. The purpose of this study is to determine the role of the receptor activator of nuclear factor-κB ligand (RANKL) inP. gingivalisinfection-associated periodontal bone resorption. Inbred female Rowett rats were infected orally on four consecutive days (days 0 to 3) with 1 × 109P. gingivalisbacteria (strain ATCC 33277). Separate groups of rats also received an injection of anti-RANKL antibody, osteoprotegerin fusion protein (OPG-Fc), or a control fusion protein (L6-Fc) into gingival papillae in addition toP. gingivalisinfection. Robust serum IgG and salivary IgA antibody (P< 0.01) and T cell proliferation (P< 0.05) responses toP. gingivaliswere detected at day 7 and peaked at day 28 inP. gingivalis-infected rats. Both the concentration of soluble RANKL (sRANKL) in rat gingival tissues (P< 0.01) and periodontal bone resorption (P< 0.05) were significantly elevated at day 28 in theP. gingivalis-infected group compared to levels in the uninfected group. Correspondingly, RANKL-expressing T and B cells in rat gingival tissues were significantly increased at day 28 in theP. gingivalis-infected group compared to the levels in the uninfected group (P< 0.01). Injection of anti-RANKL antibody (P< 0.05) or OPG-Fc (P< 0.01), but not L6-Fc, into rat gingival papillae afterP. gingivalisinfection resulted in significantly reduced periodontal bone resorption. This study suggests thatP. gingivalisinfection-associated periodontal bone resorption is RANKL dependent and is accompanied by increased local infiltration of RANKL-expressing T and B cells.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Huang, George T. J., Daniel Kim, Jonathan K. H. Lee, Howard K. Kuramitsu y Susan Kinder Haake. "Interleukin-8 and Intercellular Adhesion Molecule 1 Regulation in Oral Epithelial Cells by Selected Periodontal Bacteria: Multiple Effects of Porphyromonas gingivalis via Antagonistic Mechanisms". Infection and Immunity 69, n.º 3 (1 de marzo de 2001): 1364–72. http://dx.doi.org/10.1128/iai.69.3.1364-1372.2001.

Texto completo
Resumen
ABSTRACT Interaction of bacteria with mucosal surfaces can modulate the production of proinflammatory cytokines and adhesion molecules produced by epithelial cells. Previously, we showed that expression of interleukin-8 (IL-8) and intercellular adhesion molecule 1 (ICAM-1) by gingival epithelial cells increases following interaction with several putative periodontal pathogens. In contrast, expression of IL-8 and ICAM-1 is reduced after Porphyromonas gingivalis ATCC 33277 challenge. In the present study, we investigated the mechanisms that govern the regulation of these two molecules in bacterially infected gingival epithelial cells. Experimental approaches included bacterial stimulation of gingival epithelial cells by either a brief challenge (1.5 to 2 h) or a continuous coculture throughout the incubation period. The kinetics of IL-8 and ICAM-1 expression following brief challenge were such that (i) secretion of IL-8 by gingival epithelial cells reached its peak 2 h following Fusobacterium nucleatum infection whereas it rapidly decreased within 2 h after P. gingivalis infection and remained decreased up to 30 h and (ii) IL-8 and ICAM-1 mRNA levels were up-regulated rapidly 2 to 4 h postinfection and then decreased to basal levels 8 to 20 h after infection with either Actinobacillus actinomycetemcomitans, F. nucleatum, or P. gingivalis. Attenuation of IL-8 secretion was facilitated by adherent P. gingivalis strains. The IL-8 secreted from epithelial cells after F. nucleatum stimulation could be down-regulated by subsequent infection with P. gingivalisor its culture supernatant. Although these results suggested that IL-8 attenuation at the protein level might be associated with P. gingivalis proteases, the Arg- and Lys-gingipain proteases did not appear to be solely responsible for IL-8 attenuation. In addition, while P. gingivalis up-regulated IL-8 mRNA expression, this effect was overridden when the bacteria were continuously cocultured with the epithelial cells. The IL-8 mRNA levels in epithelial cells following sequential challenge with P. gingivalis andF. nucleatum and vice versa were approximately identical and were lower than those following F. nucleatum challenge alone and higher than control levels or those following P. gingivalis challenge alone. Thus, together with the protease effect, P. gingivalis possesses a powerful strategy to ensure the down-regulation of IL-8 and ICAM-1.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Ayala-Herrera, José Luis, Hugo Bernabe Alarcón-Morales y Josué Roberto Bermeo-Escalona. "Porphyromonas gingivalis y su impacto sobre el parto prematuro, bajo peso al nacer y preeclampsia". Tequio 5, n.º 16 (8 de septiembre de 2022): 71–84. http://dx.doi.org/10.53331/teq.v5i16.6595.

Texto completo
Resumen
Porphyromonas gingivalis is a gram-negative anaerobic pathogen, involved in the development of periodontal disease. Current evidence has associated this periodontopathogen with systemic disorders such as preterm birth, low birth weight, and preeclampsia. The aim of this systematic review was to identify, through the literature, the influence of P. gingivalis on the immune response of pregnant women, the presence of this microorganism in placental tissues and its participation in the development of preterm birth, low birth weight and preeclampsia. The review process was structured in the form of a flow chart, according to the PRISMA guidelines. The databases used were PubMed and sciELO with the following search terms: Porphyromonas gingivalis and Pregnancy; Porphyromonas gingivalis and Preterm low birth weight; Preeclampsia, Periodontitis and Pregnancy; including articles, no more than 10 years old. A total of 148 results were obtained. The quality of the articles was evaluated to guarantee the exhaustiveness of the present review. Finally, 24 articles were included. The studies included in this review suggest that Porphyromonas gingivalis influences the concentration of proinflammatory cytokines, which is associated with adverse events during pregnancy, including preterm birth, low birth weight and preeclampsia.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía