Siga este enlace para ver otros tipos de publicaciones sobre el tema: Porous materials.

Artículos de revistas sobre el tema "Porous materials"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Porous materials".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Szilágyi, Katalin, Adorján Borosnyói y Zoltán Gyurkó. "Static hardness testing of porous building materials". Epitoanyag-Journal of Silicate Based and Composite Materials 65, n.º 1 (2013): 6–10. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2013.2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Beck, J. S., C. T. Kresge y S. B. McCullen. "Porous materials". Zeolites 15, n.º 4 (mayo de 1995): 382. http://dx.doi.org/10.1016/0144-2449(95)99128-a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Clegg, W. J. y L. J. Vandeperre. "OS08W0147 Cracking and thermal shock in porous materials". Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2003.2 (2003): _OS08W0147. http://dx.doi.org/10.1299/jsmeatem.2003.2._os08w0147.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Schaefer, Dale W. "Engineered Porous Materials". MRS Bulletin 19, n.º 4 (abril de 1994): 14–19. http://dx.doi.org/10.1557/s0883769400039452.

Texto completo
Resumen
Rustum Roy recently observed that, operating from a finite number of elements, materials science faces an over-supply problem, too many scientists, and too few elements. Like all Malthusian dilemmas, relief is unlikely within the assumptions. Materials scientists, however, enjoy opportunities to develop new materials through morphological engineering of traditional substances. Carbon, after all, provided a century of progress for polymer chemists and a revolution in the manufacturing world. The trend from atomic- to molecular- to chain-level engineering can obviously be extended to mesostructure engineering and beyond. The tailoring of porosity is an example of such an extension.This issue of the MRS Bulletin examines the concept of engineered porosity from three perspectives. Smith, Hua, and Earl discuss characterization based on classic gas adsorption and more recent NMR and scattering methods. Two articles, one by Harold and Lee, and the other by Fain, look at the pore structure requirements for important applications, reactive separations and gas separation. Finally, the materials science of engineered porosity is discussed in four articles. Even describes emulsion-derived foams in which surface-active species impose micron-scale structure that is retained during polymerization. Shapovalov broadly reviews methods to introduce porosity in metals. Durian discusses recent work on relaxation phenomena in aqueous foams. Finally, I review the factors that control structure in mesoporous aerogels.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Goldsmid, Hiroshi. "Porous Thermoelectric Materials". Materials 2, n.º 3 (5 de agosto de 2009): 903–10. http://dx.doi.org/10.3390/ma2030903.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ślósarczyk, Anna y Zofia Paszkiewicz. "Porous Bioceramic Materials". Key Engineering Materials 206-213 (diciembre de 2001): 1621–24. http://dx.doi.org/10.4028/www.scientific.net/kem.206-213.1621.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Zaworotko, Michael J. "Hybrid porous materials". Acta Crystallographica Section A Foundations and Advances 71, a1 (23 de agosto de 2015): s112. http://dx.doi.org/10.1107/s2053273315098356.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Danowski, Wojciech, Thomas van Leeuwen, Wesley R. Browne y Ben L. Feringa. "Photoresponsive porous materials". Nanoscale Advances 3, n.º 1 (2021): 24–40. http://dx.doi.org/10.1039/d0na00647e.

Texto completo
Resumen
Integration of molecular photoswitches in porous materials i.e. MOFs, COFs, PAFs provides responsive materials with a variety of functions ranging from switchable gas adsorption to macroscopic actuation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Kitagawa, Susumu. "Future Porous Materials". Accounts of Chemical Research 50, n.º 3 (21 de marzo de 2017): 514–16. http://dx.doi.org/10.1021/acs.accounts.6b00500.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Barton, Thomas J., Lucy M. Bull, Walter G. Klemperer, Douglas A. Loy, Brian McEnaney, Makoto Misono, Peter A. Monson et al. "Tailored Porous Materials". Chemistry of Materials 11, n.º 10 (octubre de 1999): 2633–56. http://dx.doi.org/10.1021/cm9805929.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Brinker, C. Jeffrey. "Porous inorganic materials". Current Opinion in Solid State and Materials Science 1, n.º 6 (diciembre de 1996): 798–805. http://dx.doi.org/10.1016/s1359-0286(96)80104-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Kaskel, Stefan. "Inorganic Porous Materials". Zeitschrift für anorganische und allgemeine Chemie 636, n.º 11 (septiembre de 2010): 2037. http://dx.doi.org/10.1002/zaac.201007005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Kwong, Philip, Scott Seidel y Malancha Gupta. "Solventless Fabrication of Porous-on-Porous Materials". ACS Applied Materials & Interfaces 5, n.º 19 (27 de septiembre de 2013): 9714–18. http://dx.doi.org/10.1021/am402775r.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Li, Yan Hua, Shi Ying Zhang y Qu Min Yu. "Hierarchical Porous Materials for Supercapacitors". Advanced Materials Research 750-752 (agosto de 2013): 894–98. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.894.

Texto completo
Resumen
Hierarchical porous materials with improved properties due to enhanced mass transport through the material and a high surface area and pore volume have been used in numerous applications such as catalysts or catalyst supports, energy storage and conversion, filtration, medical diagnostics, and medical therapies. This paper presents a review of recent progress in hierarchical porous materials for supercapacitor electrodes. Hierarchical porous materials comprise of hierarchical porous carbon, hierarchical porous metal oxides and hierarchical porous composites. An emphasis is placed on the performance of hierarchical porous materials for supercapacitor electrodes in terms of specific capacitance, power density, energy density, rate capability and cyclic stability.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Zhang, Zhenglin y Ognjen Š. Miljanić. "Fluorinated Organic Porous Materials". Organic Materials 01, n.º 01 (noviembre de 2019): 019–29. http://dx.doi.org/10.1055/s-0039-1698431.

Texto completo
Resumen
Fluorine is in many aspects unique among the elements, and its incorporation into organic molecules can dramatically change their physical and chemical properties. This minireview will survey the existing classes of fluorinated porous materials, with a particular focus on all-organic porous materials. We will highlight our work on the preparation and study of metal–organic frameworks and porous molecular crystals derived from extensively fluorinated rigid aromatic pyrazoles and tetrazoles. Where possible, comparisons between fluorinated and nonfluorinated materials will be made.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Jeong, Moonkyoung, Hansol Kim y Ji-Ho Park. "Porous Materials for Immune Modulation". Open Material Sciences 4, n.º 1 (1 de abril de 2018): 1–14. http://dx.doi.org/10.1515/oms-2018-0001.

Texto completo
Resumen
Abstract Biocompatible materials have a great potential to engineer immunology towards therapeutic applications. Among them, porous materials have attracted much attention for immune modulation due to their unique porous structure. The large surface area and pore space offer high loading capacity for various payloads including peptides, proteins and even cells. We first introduce recent developments in the porous particles that can deliver immunomodulatory agents to antigen presenting cells for immunomodulation. Then, we review recent developments in the porous implants that can act as a cellattracting/ delivering platform to generate artificial immunomodulatory environments in the body. Lastly, we summarize recent findings of immunogenic porous materials that can induce strong immune responses without additional adjuvants. We also discuss future direction of porous materials to enhance their immunomodulatory potential for immunotherapeutic applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

FUJITA, Makoto. "Self-assembled Porous Materials". TRENDS IN THE SCIENCES 14, n.º 3 (2009): 38–41. http://dx.doi.org/10.5363/tits.14.3_38.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Magner, Edmond. "Electrochemistry of Porous Materials". Chromatographia 72, n.º 11-12 (14 de septiembre de 2010): 1247. http://dx.doi.org/10.1365/s10337-010-1748-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Vlad, Alexandru y Andrea Balducci. "Porous materials get energized". Nature Materials 16, n.º 2 (25 de enero de 2017): 161–62. http://dx.doi.org/10.1038/nmat4851.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Schüth, Ferdi. "ENGINEERED POROUS CATALYTIC MATERIALS". Annual Review of Materials Research 35, n.º 1 (4 de agosto de 2005): 209–38. http://dx.doi.org/10.1146/annurev.matsci.35.012704.142050.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Tian, Jian, Praveen K. Thallapally y B. Peter McGrail. "Porous organic molecular materials". CrystEngComm 14, n.º 6 (2012): 1909. http://dx.doi.org/10.1039/c2ce06457j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Kelly, A. "Why engineer porous materials?" Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, n.º 1838 (29 de noviembre de 2005): 5–14. http://dx.doi.org/10.1098/rsta.2005.1686.

Texto completo
Resumen
A number of specific examples are briefly given for the use of pores in engineering materials: a porous ceramic to produce minimum thermal conduction; thin skeleton walls in silicon to produce photoluminescence; low dielectric constant materials. The desirable nature of the pores in fuel cell electrodes and sieves is described. Further examples are given in orthopaedics, prosthetic scaffolds and sound deadening and impact resistance materials. An attempt is made to describe the desirable pore size, whether open or closed, and the useful volume fraction. This short review does not deal with flexible foams.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Forry, John S. y Karl B. Himmelberger. "Acoustically porous building materials". Journal of the Acoustical Society of America 80, n.º 6 (diciembre de 1986): 1866. http://dx.doi.org/10.1121/1.394248.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Mohanty, K. K. y G. J. Hirasaki. "Transport in Porous Materials". Current Opinion in Colloid & Interface Science 6, n.º 3 (junio de 2001): 189–90. http://dx.doi.org/10.1016/s1359-0294(01)00098-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Sorbier, Loïc, Elisabeth Rosenberg y Claude Merlet. "Microanalysis of Porous Materials". Microscopy and Microanalysis 10, n.º 6 (diciembre de 2004): 745–52. http://dx.doi.org/10.1017/s1431927604040681.

Texto completo
Resumen
A signal loss is generally reported in electron probe microanalysis (EPMA) of porous, highly divided materials like heterogeneous catalysts. The hypothesis generally proposed to explain this signal loss refers to porosity, roughness, energy losses at interfaces, or charging effects. In this work we investigate by Monte Carlo simulation all these physical effects and compare the simulated results with measurements obtained on a mesoporous alumina. A program using the PENELOPE package and taking into account these four physical phenomena has been written. Simulation results show clearly that neither porosity nor roughness, nor specific energy losses at interfaces, nor charging effects are responsible for the observed signal loss. Measurements performed with analysis of carbon and oxygen lead to a correct total of concentration. The signal loss is thus explained by a composition effect due to a carbon contamination brought by the sample preparation and to a lesser extent by a stoichiometry of the porous alumina different from a massive alumina. For this kind of high specific surface porous sample, a little surface contamination layer becomes an important volume contamination that can produce large quantification errors if the contaminant is not analyzed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Milia, F., M. Fardis, G. Papavassiliou y A. Leventis. "NMR in porous materials". Magnetic Resonance Imaging 16, n.º 5-6 (junio de 1998): 677–78. http://dx.doi.org/10.1016/s0730-725x(98)00025-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

O'Brien, R. W. "Electroosmosis in porous materials". Journal of Colloid and Interface Science 110, n.º 2 (abril de 1986): 477–87. http://dx.doi.org/10.1016/0021-9797(86)90401-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Zhang, J., W. Q. Shen, A. Oueslati y G. De Saxcé. "Shakedown of porous materials". International Journal of Plasticity 95 (agosto de 2017): 123–41. http://dx.doi.org/10.1016/j.ijplas.2017.04.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Sarkisov, P. D., E. E. Stroganova, N. Yu Mikhailenko y N. V. Buchilin. "Glass-based porous materials". Glass and Ceramics 65, n.º 9-10 (septiembre de 2008): 333–36. http://dx.doi.org/10.1007/s10717-009-9088-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Bevilacqua, P. y G. Ferrara. "Comminution of porous materials". International Journal of Mineral Processing 44-45 (marzo de 1996): 117–31. http://dx.doi.org/10.1016/0301-7516(95)00023-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

White, Robin J, Vitaly L Budarin y James H Clark. "Pectin-Derived Porous Materials". Chemistry - A European Journal 16, n.º 4 (25 de enero de 2010): 1326–35. http://dx.doi.org/10.1002/chem.200901879.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Yu, Jihong, Avelino Corma y Yi Li. "Functional Porous Materials Chemistry". Advanced Materials 32, n.º 44 (noviembre de 2020): 2006277. http://dx.doi.org/10.1002/adma.202006277.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Kryuchkov, Yu N. "Permeability of porous materials". Glass and Ceramics 54, n.º 1-2 (febrero de 1997): 58–60. http://dx.doi.org/10.1007/bf02767147.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Koshlak, Hanna y Anatoliy Pavlenko. "Thermophysical properties of porous materials". Joupnal of New Technologies in Environmental Science 7, n.º 4 (15 de diciembre de 2020): 29–39. http://dx.doi.org/10.30540/jntes-2020-4.3.

Texto completo
Resumen
The study of the porosity of thermal insulation made of refractory materials is an important task for the power industry, since the thermal conductivity of porous materials depends on the shape and especially the location of the pores. An analytical review of existing technologies shows that research in this area is not enough to simulate the process of heat and mass transfer in porous alumina material. Experimental determination of the characteristics of heat and mass transfer in porous materials during the formation of a porous structure is a pressing scientific problem. This article analyzes the influence of the composition of materials on the formation of pores, as well as the effect of various impurities and temperature on the thermal conductivity of the material.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Fang, Yu Cheng, H. Wang, Yong Zhou y Chun Jiang Kuang. "Development of Some New Porous Metal Materials". Materials Science Forum 534-536 (enero de 2007): 949–52. http://dx.doi.org/10.4028/www.scientific.net/msf.534-536.949.

Texto completo
Resumen
Porous metal materials have been widely used in various industrial fields in the world. This paper describes the recent research achievements of CISRI in the development of porous metal materials. High performance porous metal materials, such as large dimensional and structure complicated porous metal aeration cones and tube, sub-micron asymmetric composite porous metal, metallic membrane, metallic catalytic filter elements, lotus-type porous materials, etc, have been developed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

YOKOTA, Kenichiro, Pin WEN y Naoki TAKANO. "OS1333-339 Stochastic Multiscale Analysis for Microstructure Design of Porous Materials". Proceedings of the Materials and Mechanics Conference 2015 (2015): _OS1333–33—_OS1333–33. http://dx.doi.org/10.1299/jsmemm.2015._os1333-33.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Wijaya, Karna. "MULTIFUNCTION OF LAYERED AND POROUS MATERIALS". Indonesian Journal of Chemistry 2, n.º 3 (9 de junio de 2010): 142–54. http://dx.doi.org/10.22146/ijc.21909.

Texto completo
Resumen
In this review, two sort of materials i.e layered and porous materias which were studied by the author and coworkers intensively and extensively will be described. These materials generally can be classified into two groups, namely layered organic and inorganic materials and porous organic and inorganic materials. To the materials which classified in the first group, it will be discussed the syntheses, characterization and application of layered organic materials of imidazolium-dimesylamidate and of layered inorganic materials of montmorillonite. For the second group, as examples we will analogically describe the syntheses, characterization and application of 2,6-dimethylpyridinium-di(methanesulfonyl)amidate porous organic material and zeolite and pillared clay porous inorganic materials. Keywords: layered materials, porous materials, syntheses, characterization, application.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Wang, Wei. "Porous Organic Polymers: A New Star in Porous Materials". Acta Chimica Sinica 73, n.º 6 (2015): 461. http://dx.doi.org/10.6023/a1506e001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Wang, Luyao y Wen Sun. "Research Progress of Geopolymer Porous Materials". Journal of Education and Educational Research 6, n.º 2 (10 de diciembre de 2023): 136–37. http://dx.doi.org/10.54097/jeer.v6i2.14977.

Texto completo
Resumen
Compared with traditional inorganic ceramic membranes, geopolymer porous materials have the advantages of non-sintering, low cost and simple preparation process. In this paper, the raw materials and preparation methods of geopolymer porous materials are reviewed in order to provide scientific basis for the research and development of similar porous materials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Kitagawa, Susumu. "Porous crystalline materials: closing remarks". Faraday Discussions 201 (2017): 395–404. http://dx.doi.org/10.1039/c7fd90042b.

Texto completo
Resumen
This paper is derived from my ‘closing remarks’ lecture at the 287th Faraday Discussions meeting on New Directions in Porous Crystalline Materials, Edinburgh, UK, 5–7 June, 2017. This meeting comprised sessions on the design of porous networks, and their capture, storage, separation, conducting properties, catalysts, resistance to chemicals and moisture, simulation, and electronic structures. This paper details the achievements and developments in the field, as reflected in invited speakers’ papers and discussions with the attendees during the meeting.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Buznik, V. M. y N. I. Vasilevich. "Porous fibrous materials – new approaches". Laboratory and production 4, n.º 4 (2018): 122–30. http://dx.doi.org/10.32757/2619-0923.2018.4.4.122.130.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Shashkeev, K. A., E. M. Shuldeshov, O. V. Popkov, I. D. Kraev y G. Yu Yurkov. "Porous sound-absorbing materials (review)". Proceedings of VIAM, n.º 6 (2016): 6. http://dx.doi.org/10.18577/2307-6046-2016-0-6-6-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Zhang, Qiang, Shuqin Yan y Mingzhong Li. "Silk Fibroin Based Porous Materials". Materials 2, n.º 4 (9 de diciembre de 2009): 2276–95. http://dx.doi.org/10.3390/ma2042276.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Luyten, Jan, J. F. C. Cooymans, A. De Wilde y I. Thijs. "Porous Materials, Synthesis and Charaterization". Key Engineering Materials 206-213 (diciembre de 2001): 1937–40. http://dx.doi.org/10.4028/www.scientific.net/kem.206-213.1937.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Kachalova, Ekaterina A., Ivan R. Lednev, R. S. Kovylin y L. A. Smirnova. "Modified Starch Highly Porous Materials". Key Engineering Materials 899 (8 de septiembre de 2021): 80–85. http://dx.doi.org/10.4028/www.scientific.net/kem.899.80.

Texto completo
Resumen
A technique for starch modification by graft polymerization of acrylamide has been developed. The obtained copolymer is soluble in a wide range of pH 2 - 12. The modification of starch made it possible to freely combine it with aqueous acid solutions of chitosan, in order to achieve a synergistic effect of their properties. A porous material based on modified starch and its mixtures with chitosan, which has high sorption characteristics, has been developed. The resulting material is promising as a sorbent of heavy metal ions and packing materials for transportation and storage.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Shimizu, Seishi y Nobuyuki Matubayasi. "Cooperative Sorption on Porous Materials". Langmuir 37, n.º 34 (19 de agosto de 2021): 10279–90. http://dx.doi.org/10.1021/acs.langmuir.1c01236.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Chen, Zhijie, Kent O. Kirlikovali, Karam B. Idrees, Megan C. Wasson y Omar K. Farha. "Porous materials for hydrogen storage". Chem 8, n.º 3 (marzo de 2022): 693–716. http://dx.doi.org/10.1016/j.chempr.2022.01.012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

YUNG, PARK. "FRACTAL GEOMETRY OF POROUS MATERIALS". Fractals 08, n.º 03 (septiembre de 2000): 301–6. http://dx.doi.org/10.1142/s0218348x00000354.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

McDonald, Peter y John Strange. "Magnetic resonance and porous materials". Physics World 11, n.º 7 (julio de 1998): 29–34. http://dx.doi.org/10.1088/2058-7058/11/7/28.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Meng, Xing, Hai-Ning Wang, Shu-Yan Song y Hong-Jie Zhang. "Proton-conducting crystalline porous materials". Chemical Society Reviews 46, n.º 2 (2017): 464–80. http://dx.doi.org/10.1039/c6cs00528d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía