Siga este enlace para ver otros tipos de publicaciones sobre el tema: Polypyridyl.

Artículos de revistas sobre el tema "Polypyridyl"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Polypyridyl".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Mazuryk, Olga, Przemysław Gajda-Morszewski y Małgorzata Brindell. "Versatile Impact of Serum Proteins on Ruthenium(II) Polypyridyl Complexes Properties - Opportunities and Obstacles". Current Protein & Peptide Science 20, n.º 11 (24 de octubre de 2019): 1052–59. http://dx.doi.org/10.2174/1389203720666190513090851.

Texto completo
Resumen
Ruthenium(II) polypyridyl complexes have been extensively studied for the past few decades as promising anticancer agents. Despite the expected intravenous route of administration, the interaction between Ru(II) polypyridyl compounds and serum proteins is not well characterized and vast majority of the available literature data concerns determination of the binding constant. Ru-protein adducts can modify the biological effects of the Ru complexes influencing their cytotoxic and antimicrobial activity as well as introduce significant changes in their photophysical properties. More extensive research on the interaction between serum proteins and Ru(II) polypyridyl complexes is important for further development of Ru(II) polypyridyl compounds towards their application in anticancer therapy and diagnostics and can open new opportunities for already developed complexes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

O’Neill, Luke, Laura Perdisatt y Christine O’Connor. "Structure-Property Relationships for a Series of Ruthenium(II) Polypyridyl Complexes Elucidated through Raman Spectroscopy". Journal of Spectroscopy 2018 (1 de noviembre de 2018): 1–11. http://dx.doi.org/10.1155/2018/3827130.

Texto completo
Resumen
A series of ruthenium polypyridyl complexes were studied using Raman spectroscopy supported by UV/Vis absorption, luminescence spectroscopy, and luminescence lifetime determination by time-correlated single photon counting (TCSPC). The complexes were characterised to determine the influence of the variation of the conjugation across the main polypyridyl ligand. The systematic and sequential variation of the main polypyridyl ligand, 2-(4-formylphenyl)imidazo[4,5-f][1,10]phenanthroline (FPIP), 2-(4-cyanophenyl)imidazo[4,5-f][1,10]phenanthroline (CPIP), 2-(4-bromophenyl)imidazo[4,5-f][1,10]phenanthroline (BPIP), and 2-(4-nitrophenyl)imidazo[4,5-f][1,10]phenanthroline (NPIP) ligands, allowed the monitoring of very small changes in the ligands electronic nature. Complexes containing a systematic variation of the position (para, meta, and ortho) of the nitrile terminal group on the ligand (the para being 2-(4-cyanophenyl)imidazo[4,5-f][1,10]phenanthroline (p-CPIP), the meta 2-(3-cyanophenyl)imidazo[4,5-f][1,10]phenanthroline (m-CPIP) and 2-(2-cyanophenyl)imidazo[4,5-f][1,10]phenanthroline (o-CPIP)) were also characterised. Absorption, emission characteristics, and luminescence yields were calculated and correlated with structural variation. It was found that both the electronic changes in the aforementioned ligands showed very small spectral changes with an accompanying complex relationship when examined with traditional electronic methods. Stokes shift and Raman spectroscopy were then employed as a means to directly gauge the effect of polypyridyl ligand change on the conjugation and vibrational characteristics of the complexes. Vibrational coherence as measured as a function of the shifted frequency of the imizodale bridge was shown to accurately describe the electronic coherence and hence vibrational cooperation from the ruthenium centre to the main polypyridyl ligand. The well-defined trends established and elucidated though Raman spectroscopy show that the variation of the polypyridyl ligand can be monitored and tailored. This allows for a greater understanding of the electronic and excited state characteristics of the ruthenium systems when traditional electronic spectroscopy lacks the sensitivity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lu, Xiaoqing, Shuxian Wei, Chi-Man Lawrence Wu, Ning Ding, Shaoren Li, Lianming Zhao y Wenyue Guo. "Theoretical Insight into the Spectral Characteristics of Fe(II)-Based Complexes for Dye-Sensitized Solar Cells—Part I: Polypyridyl Ancillary Ligands". International Journal of Photoenergy 2011 (2011): 1–11. http://dx.doi.org/10.1155/2011/316952.

Texto completo
Resumen
The design of light-absorbent dyes with cheaper, safer, and more sustainable materials is one of the key issues for the future development of dye-sensitized solar cells (DSSCs). We report herein a theoretical investigation on a series of polypyridyl Fe(II)-based complexes of FeL2(SCN)2, [FeL3]2+, [FeL′(SCN)3]-, [FeL′2]2+, and FeL′′(SCN)2(L = 2,2′-bipyridyl-4,4′-dicarboxylic acid, L′ = 2,2′,2″-terpyridyl-4,4′,4″-tricarboxylic acid, L″= 4,4‴-dimethyl-2,2′ : 6′,2″ :6″,2‴-quaterpyridyl-4′,4″-biscarboxylic acid) by density functional theory (DFT) and time-dependent DFT (TD-DFT). Molecular geometries, electronic structures, and optical absorption spectra are predicted in both the gas phase and methyl cyanide (MeCN) solution. Our results show that polypyridyl Fe(II)-based complexes display multitransition characters of Fe → polypyridine metal-to-ligand charge transfer and ligand-to-ligand charge transfer in the range of 350–800 nm. Structural optimizations by choosing different polypyridyl ancillary ligands lead to alterations of the molecular orbital energies, oscillator strength, and spectral response range. Compared with Ru(II) sensitizers, Fe(II)-based complexes show similar characteristics and improving trend of optical absorption spectra along with the introduction of different polypyridyl ancillary ligands.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Nandhini, T., K. R. Anju, V. M. Manikandamathavan, V. G. Vaidyanathan y B. U. Nair. "Interactions of Ru(ii) polypyridyl complexes with DNA mismatches and abasic sites". Dalton Transactions 44, n.º 19 (2015): 9044–51. http://dx.doi.org/10.1039/c5dt00807g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Amiri, Mona, Octavio Martinez Perez, Riley T. Endean, Loorthuraja Rasu, Prabin Nepal, Shuai Xu y Steven H. Bergens. "Solid-phase synthesis and photoactivity of Ru-polypyridyl visible light chromophores bonded through carbon to semiconductor surfaces". Dalton Transactions 49, n.º 29 (2020): 10173–84. http://dx.doi.org/10.1039/d0dt01776k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Race, N. A., W. Zhang, M. E. Screen, B. A. Barden y W. R. McNamara. "Iron polypyridyl catalysts assembled on metal oxide semiconductors for photocatalytic hydrogen generation". Chemical Communications 54, n.º 26 (2018): 3290–93. http://dx.doi.org/10.1039/c8cc00453f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Pierroz, Vanessa, Riccardo Rubbiani, Christian Gentili, Malay Patra, Cristina Mari, Gilles Gasser y Stefano Ferrari. "Dual mode of cell death upon the photo-irradiation of a RuIIpolypyridyl complex in interphase or mitosis". Chemical Science 7, n.º 9 (2016): 6115–24. http://dx.doi.org/10.1039/c6sc00387g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Liu, Ze-Yu, Jin Zhang, Yan-Mei Sun, Chun-Fang Zhu, Yan-Na Lu, Jian-Zhong Wu, Jing Li, Hai-Yang Liu y Yong Ye. "Photodynamic antitumor activity of Ru(ii) complexes of imidazo-phenanthroline conjugated hydroxybenzoic acid as tumor targeting photosensitizers". Journal of Materials Chemistry B 8, n.º 3 (2020): 438–46. http://dx.doi.org/10.1039/c9tb02103e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Martin, Aaron, Aisling Byrne, Ciarán Dolan, Robert J. Forster y Tia E. Keyes. "Solvent switchable dual emission from a bichromophoric ruthenium–BODIPY complex". Chemical Communications 51, n.º 87 (2015): 15839–41. http://dx.doi.org/10.1039/c5cc07135f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Leem, Gyu, Shahar Keinan, Junlin Jiang, Zhuo Chen, Toan Pho, Zachary A. Morseth, Zhenya Hu et al. "Ru(bpy)32+ derivatized polystyrenes constructed by nitroxide-mediated radical polymerization. Relationship between polymer chain length, structure and photophysical properties". Polymer Chemistry 6, n.º 47 (2015): 8184–93. http://dx.doi.org/10.1039/c5py01289a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Yamaguchi, Eiji, Nao Taguchi y Akichika Itoh. "Ruthenium polypyridyl complex-catalysed aryl alkoxylation of styrenes: improving reactivity using a continuous flow photo-microreactor". Reaction Chemistry & Engineering 4, n.º 6 (2019): 995–99. http://dx.doi.org/10.1039/c9re00061e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Margonis, Caroline M., Marissa Ho, Benjamin D. Travis, William W. Brennessel y William R. McNamara. "Iron polypyridyl complex adsorbed on carbon surfaces for hydrogen generation". Chemical Communications 57, n.º 62 (2021): 7697–700. http://dx.doi.org/10.1039/d1cc02131a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Notaro, Anna y Gilles Gasser. "Monomeric and dimeric coordinatively saturated and substitutionally inert Ru(ii) polypyridyl complexes as anticancer drug candidates". Chemical Society Reviews 46, n.º 23 (2017): 7317–37. http://dx.doi.org/10.1039/c7cs00356k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Li, Shuang, Gang Xu, Yuhua Zhu, Jian Zhao y Shaohua Gou. "Bifunctional ruthenium(ii) polypyridyl complexes of curcumin as potential anticancer agents". Dalton Transactions 49, n.º 27 (2020): 9454–63. http://dx.doi.org/10.1039/d0dt01040e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Martínez-Alonso, Marta y Gilles Gasser. "Ruthenium polypyridyl complex-containing bioconjugates". Coordination Chemistry Reviews 434 (mayo de 2021): 213736. http://dx.doi.org/10.1016/j.ccr.2020.213736.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Banerjee, Tanmay, Abul Kalam Biswas, Tuhin Subhra Sahu, Bishwajit Ganguly, Amitava Das y Hirendra Nath Ghosh. "New Ru(ii)/Os(ii)-polypyridyl complexes for coupling to TiO2 surfaces through acetylacetone functionality and studies on interfacial electron-transfer dynamics". Dalton Trans. 43, n.º 36 (2014): 13601–11. http://dx.doi.org/10.1039/c4dt01571a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Taheri, Atefeh y Gerald J. Meyer. "Temperature dependent iodide oxidation by MLCT excited states". Dalton Trans. 43, n.º 47 (2014): 17856–63. http://dx.doi.org/10.1039/c4dt01683a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Poynton, Fergus E., Sandra A. Bright, Salvador Blasco, D. Clive Williams, John M. Kelly y Thorfinnur Gunnlaugsson. "The development of ruthenium(ii) polypyridyl complexes and conjugates forin vitrocellular andin vivoapplications". Chemical Society Reviews 46, n.º 24 (2017): 7706–56. http://dx.doi.org/10.1039/c7cs00680b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Liao, Xiangwen, Guijuan Jiang, Jintao Wang, Xuemin Duan, Zhouyuji Liao, Xiaoli Lin, Jihong Shen, Yanshi Xiong y Guangbin Jiang. "Two ruthenium polypyridyl complexes functionalized with thiophen: synthesis and antibacterial activity against Staphylococcus aureus". New Journal of Chemistry 44, n.º 40 (2020): 17215–21. http://dx.doi.org/10.1039/d0nj02944k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Sun, Qinchao, Bogdan Dereka, Eric Vauthey, Latévi M. Lawson Daku y Andreas Hauser. "Ultrafast transient IR spectroscopy and DFT calculations of ruthenium(ii) polypyridyl complexes". Chemical Science 8, n.º 1 (2017): 223–30. http://dx.doi.org/10.1039/c6sc01220e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Cardin, Christine J., John M. Kelly y Susan J. Quinn. "Photochemically active DNA-intercalating ruthenium and related complexes – insights by combining crystallography and transient spectroscopy". Chemical Science 8, n.º 7 (2017): 4705–23. http://dx.doi.org/10.1039/c7sc01070b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Queyriaux, N., E. Giannoudis, C. D. Windle, S. Roy, J. Pécaut, A. G. Coutsolelos, V. Artero y M. Chavarot-Kerlidou. "A noble metal-free photocatalytic system based on a novel cobalt tetrapyridyl catalyst for hydrogen production in fully aqueous medium". Sustainable Energy & Fuels 2, n.º 3 (2018): 553–57. http://dx.doi.org/10.1039/c7se00428a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Conti, Luca, Silvia Ciambellotti, Gina Elena Giacomazzo, Veronica Ghini, Lucrezia Cosottini, Elisa Puliti, Mirko Severi et al. "Ferritin nanocomposites for the selective delivery of photosensitizing ruthenium-polypyridyl compounds to cancer cells". Inorganic Chemistry Frontiers 9, n.º 6 (2022): 1070–81. http://dx.doi.org/10.1039/d1qi01268a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Azar, Daniel F., Hassib Audi, Stephanie Farhat, Mirvat El-Sibai, Ralph J. Abi-Habib y Rony S. Khnayzer. "Phototoxicity of strained Ru(ii) complexes: is it the metal complex or the dissociating ligand?" Dalton Transactions 46, n.º 35 (2017): 11529–32. http://dx.doi.org/10.1039/c7dt02255g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Tripathy, Suman Kumar, Umasankar De, Niranjan Dehury, Satyanarayan Pal, Hyung Sik Kim y Srikanta Patra. "Dinuclear [{(p-cym)RuCl}2(μ-phpy)](PF6)2 and heterodinuclear [(ppy)2Ir(μ-phpy)Ru(p-cym)Cl](PF6)2 complexes: synthesis, structure and anticancer activity". Dalton Trans. 43, n.º 39 (2014): 14546–49. http://dx.doi.org/10.1039/c4dt01033g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Ryan, Gary J., Fergus E. Poynton, Robert B. P. Elmes, Marialuisa Erby, D. Clive Williams, Susan J. Quinn y Thorfinnur Gunnlaugsson. "Unexpected DNA binding properties with correlated downstream biological applications in mono vs. bis-1,8-naphthalimide Ru(ii)-polypyridyl conjugates". Dalton Transactions 44, n.º 37 (2015): 16332–44. http://dx.doi.org/10.1039/c5dt00360a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Jella, Tejaswi, Malladi Srikanth, Rambabu Bolligarla, Yarasi Soujanya, Surya Prakash Singh y Lingamallu Giribabu. "Benzimidazole-functionalized ancillary ligands for heteroleptic Ru(ii) complexes: synthesis, characterization and dye-sensitized solar cell applications". Dalton Transactions 44, n.º 33 (2015): 14697–706. http://dx.doi.org/10.1039/c5dt02074c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Luo, Zuandi, Lianling Yu, Fang Yang, Zhennan Zhao, Bo Yu, Haoqiang Lai, Ka-Hing Wong, Sai-Ming Ngai, Wenjie Zheng y Tianfeng Chen. "Ruthenium polypyridyl complexes as inducer of ROS-mediated apoptosis in cancer cells by targeting thioredoxin reductase". Metallomics 6, n.º 8 (2014): 1480–90. http://dx.doi.org/10.1039/c4mt00044g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Zhao, Xueze, Mingle Li, Wen Sun, Jiangli Fan, Jianjun Du y Xiaojun Peng. "An estrogen receptor targeted ruthenium complex as a two-photon photodynamic therapy agent for breast cancer cells". Chemical Communications 54, n.º 51 (2018): 7038–41. http://dx.doi.org/10.1039/c8cc03786h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Jakubaszek, Marta, Bruno Goud, Stefano Ferrari y Gilles Gasser. "Mechanisms of action of Ru(ii) polypyridyl complexes in living cells upon light irradiation". Chemical Communications 54, n.º 93 (2018): 13040–59. http://dx.doi.org/10.1039/c8cc05928d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Tripathy, Suman Kumar, Umasankar De, Niranjan Dehury, Paltan Laha, Manas Kumar Panda, Hyung Sik Kim y Srikanta Patra. "Cyclometallated iridium complexes inducing paraptotic cell death like natural products: synthesis, structure and mechanistic aspects". Dalton Transactions 45, n.º 38 (2016): 15122–36. http://dx.doi.org/10.1039/c6dt00929h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Gill, Martin R., Michael G. Walker, Sarah Able, Ole Tietz, Abirami Lakshminarayanan, Rachel Anderson, Rod Chalk et al. "An 111In-labelled bis-ruthenium(ii) dipyridophenazine theranostic complex: mismatch DNA binding and selective radiotoxicity towards MMR-deficient cancer cells". Chemical Science 11, n.º 33 (2020): 8936–44. http://dx.doi.org/10.1039/d0sc02825h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Weder, Nicola, Benjamin Probst, Laurent Sévery, Ricardo J. Fernández-Terán, Jan Beckord, Olivier Blacque, S. David Tilley, Peter Hamm, Jürg Osterwalder y Roger Alberto. "Mechanistic insights into photocatalysis and over two days of stable H2 generation in electrocatalysis by a molecular cobalt catalyst immobilized on TiO2". Catalysis Science & Technology 10, n.º 8 (2020): 2549–60. http://dx.doi.org/10.1039/d0cy00330a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Qiu, Yuqing, Yuquan Feng, Qian Zhao, Hongwei Wang, Yingchen Guo y Dongfang Qiu. "White light emission from a green cyclometalated platinum(ii) terpyridylphenylacetylide upon titration with Zn(ii) and Eu(iii )". Dalton Transactions 49, n.º 32 (2020): 11163–69. http://dx.doi.org/10.1039/d0dt02336a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Singh, Vikram, Prakash Chandra Mondal, Megha Chhatwal, Yekkoni Lakshmanan Jeyachandran y Michael Zharnikov. "Catalytic oxidation of ascorbic acid via copper–polypyridyl complex immobilized on glass". RSC Adv. 4, n.º 44 (2014): 23168–76. http://dx.doi.org/10.1039/c4ra00817k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Yang, Jing, Qian Cao, Wei-Liang Hu, Rui-Rong Ye, Liang He, Liang-Nian Ji, Peter Z. Qin y Zong-Wan Mao. "Theranostic TEMPO-functionalized Ru(ii) complexes as photosensitizers and oxidative stress indicators". Dalton Transactions 46, n.º 2 (2017): 445–54. http://dx.doi.org/10.1039/c6dt04028d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Xiong, Zushuang, Jing-Xiang Zhong, Zhennan Zhao y Tianfeng Chen. "Biocompatible ruthenium polypyridyl complexes as efficient radiosensitizers". Dalton Transactions 48, n.º 13 (2019): 4114–18. http://dx.doi.org/10.1039/c9dt00333a.

Texto completo
Resumen
A biocompatible ruthenium polypyridyl complex has been rationally designed, which could self-assemble into nanoparticles in aqueous solution to enhance the solubility and biocompatibility, and could synergistically realize simultaneous cancer chemo-radiotherapy.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Banerjee, Samya, Ila Pant, Imran Khan, Puja Prasad, Akhtar Hussain, Paturu Kondaiah y Akhil R. Chakravarty. "Remarkable enhancement in photocytotoxicity and hydrolytic stability of curcumin on binding to an oxovanadium(iv) moiety". Dalton Transactions 44, n.º 9 (2015): 4108–22. http://dx.doi.org/10.1039/c4dt02165g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

De Vos, Arthur, Kurt Lejaeghere, Francesco Muniz Miranda, Christian V. Stevens, Pascal Van Der Voort y Veronique Van Speybroeck. "Electronic properties of heterogenized Ru(ii) polypyridyl photoredox complexes on covalent triazine frameworks". Journal of Materials Chemistry A 7, n.º 14 (2019): 8433–42. http://dx.doi.org/10.1039/c9ta00573k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Elgrishi, Noémie, Matthew B. Chambers, Xia Wang y Marc Fontecave. "Molecular polypyridine-based metal complexes as catalysts for the reduction of CO2". Chemical Society Reviews 46, n.º 3 (2017): 761–96. http://dx.doi.org/10.1039/c5cs00391a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Vilvamani, Narayanasamy, Tarkeshwar Gupta, Rinkoo Devi Gupta y Satish Kumar Awasthi. "Bottom-up molecular-assembly of Ru(ii)polypyridyl complex-based hybrid nanostructures decorated with silver nanoparticles: effect of Ag nitrate concentration". RSC Adv. 4, n.º 38 (2014): 20024–30. http://dx.doi.org/10.1039/c4ra01347f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Chen, Tianfeng, Wen-Jie Mei, Yum-Shing Wong, Jie Liu, Yanan Liu, Huang-Song Xie y Wen-Jie Zheng. "Correction: Chiral ruthenium polypyridyl complexes as mitochondria-targeted apoptosis inducers". MedChemComm 9, n.º 4 (2018): 745. http://dx.doi.org/10.1039/c8md90010h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Zayat, Leonardo, Oscar Filevich, Luis M. Baraldo y Roberto Etchenique. "Ruthenium polypyridyl phototriggers: from beginnings to perspectives". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, n.º 1995 (28 de julio de 2013): 20120330. http://dx.doi.org/10.1098/rsta.2012.0330.

Texto completo
Resumen
Octahedral Ru(II) polypyridyl complexes constitute a superb platform to devise photoactive triggers capable of delivering entire molecules in a reliable, fast, efficient and clean way. Ruthenium coordination chemistry opens the way to caging a wide range of molecules, such as amino acids, nucleotides, neurotransmitters, fluorescent probes and genetic inducers. Contrary to other phototriggers, these Ru-based caged compounds are active with visible light, and can be photolysed even at 532 nm (green), enabling the use of simple and inexpensive equipment. These compounds are also active in the two-photon regime, a property that extends their scope to systems where IR light must be used to achieve high precision and penetrability. The state of the art and the future of ruthenium polypyridyl phototriggers are discussed, and several new applications are presented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Shi, Hongdong, Tiantian Fang, Yao Tian, Hai Huang y Yangzhong Liu. "A dual-fluorescent nano-carrier for delivering photoactive ruthenium polypyridyl complexes". Journal of Materials Chemistry B 4, n.º 27 (2016): 4746–53. http://dx.doi.org/10.1039/c6tb01070a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Eskandari, Arvin, Arunangshu Kundu, Chunxin Lu, Sushobhan Ghosh y Kogularamanan Suntharalingam. "Synthesis, characterization, and cytotoxic properties of mono- and di-nuclear cobalt(ii)-polypyridyl complexes". Dalton Transactions 47, n.º 16 (2018): 5755–63. http://dx.doi.org/10.1039/c8dt00577j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Akatsuka, Komi, Ryosuke Abe, Tsugiko Takase y Dai Oyama. "Coordination Chemistry of Ru(II) Complexes of an Asymmetric Bipyridine Analogue: Synergistic Effects of Supporting Ligand and Coordination Geometry on Reactivities". Molecules 25, n.º 1 (19 de diciembre de 2019): 27. http://dx.doi.org/10.3390/molecules25010027.

Texto completo
Resumen
The reactivities of transition metal coordination compounds are often controlled by the environment around the coordination sphere. For ruthenium(II) complexes, differences in polypyridyl supporting ligands affect some types of reactivity despite identical coordination geometries. To evaluate the synergistic effects of (i) the supporting ligands, and (ii) the coordination geometry, a series of dicarbonyl–ruthenium(II) complexes that contain both asymmetric and symmetric bidentate polypyridyl ligands were synthesized. Molecular structures of the complexes were determined by X-ray crystallography to distinguish their steric configuration. Structural, computational, and electrochemical analysis revealed some differences between the isomers. Photo- and thermal reactions indicated that the reactivities of the complexes were significantly affected by both their structures and the ligands involved.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Soman, Suraj, Jennifer C. Manton, Jane L. Inglis, Yvonne Halpin, Brendan Twamley, Edwin Otten, Wesley R. Browne, Luisa De Cola, Johannes G. Vos y Mary T. Pryce. "New synthetic pathways to the preparation of near-blue emitting heteroleptic Ir(iii)N6 coordinated compounds with microsecond lifetimes". Chem. Commun. 50, n.º 49 (2014): 6461–63. http://dx.doi.org/10.1039/c4cc02249a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Byrne, Aisling, Christopher S. Burke y Tia E. Keyes. "Precision targeted ruthenium(ii) luminophores; highly effective probes for cell imaging by stimulated emission depletion (STED) microscopy". Chemical Science 7, n.º 10 (2016): 6551–62. http://dx.doi.org/10.1039/c6sc02588a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Viere, Erin J., Ashley E. Kuhn, Margaret H. Roeder, Nicholas A. Piro, W. Scott Kassel, Timothy J. Dudley y Jared J. Paul. "Spectroelectrochemical studies of a ruthenium complex containing the pH sensitive 4,4′-dihydroxy-2,2′-bipyridine ligand". Dalton Transactions 47, n.º 12 (2018): 4149–61. http://dx.doi.org/10.1039/c7dt04554a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Lenis-Rojas, Oscar, Catarina Roma-Rodrigues, Alexandra Fernandes, Andreia Carvalho, Sandra Cordeiro, Jorge Guerra-Varela, Laura Sánchez et al. "Evaluation of the In Vitro and In Vivo Efficacy of Ruthenium Polypyridyl Compounds against Breast Cancer". International Journal of Molecular Sciences 22, n.º 16 (18 de agosto de 2021): 8916. http://dx.doi.org/10.3390/ijms22168916.

Texto completo
Resumen
The clinical success of cisplatin, carboplatin, and oxaliplatin has sparked the interest of medicinal inorganic chemistry to synthesize and study compounds with non-platinum metal centers. Despite Ru(II)–polypyridyl complexes being widely studied and well established for their antitumor properties, there are not enough in vivo studies to establish the potentiality of this type of compound. Therefore, we report to the best of our knowledge the first in vivo study of Ru(II)–polypyridyl complexes against breast cancer with promising results. In order to conduct our study, we used MCF7 zebrafish xenografts and ruthenium complexes [Ru(bipy)2(C12H8N6-N,N)][CF3SO3]2Ru1 and [{Ru(bipy)2}2(μ-C12H8N6-N,N)][CF3SO3]4Ru2, which were recently developed by our group. Ru1 and Ru2 reduced the tumor size by an average of 30% without causing significant signs of lethality when administered at low doses of 1.25 mg·L−1. Moreover, the in vitro selectivity results were confirmed in vivo against MCF7 breast cancer cells. Surprisingly, this work suggests that both the mono- and the dinuclear Ru(II)–polypyridyl compounds have in vivo potential against breast cancer, since there were no significant differences between both treatments, highlighting Ru1 and Ru2 as promising chemotherapy agents in breast cancer therapy.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía