Literatura académica sobre el tema "Polymers"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Polymers".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Polymers"
Hili, Ryan, Chun Guo, Dehui Kong y Yi Lei. "Expanding the Chemical Diversity of DNA". Synlett 29, n.º 11 (20 de marzo de 2018): 1405–14. http://dx.doi.org/10.1055/s-0036-1591959.
Texto completoChen, Guang, Lei Tao y Ying Li. "Predicting Polymers’ Glass Transition Temperature by a Chemical Language Processing Model". Polymers 13, n.º 11 (7 de junio de 2021): 1898. http://dx.doi.org/10.3390/polym13111898.
Texto completoBrostow, Witold, Hanna Fałtynowicz, Osman Gencel, Andrei Grigoriev, Haley E. Hagg Lobland y Danny Zhang. "Mechanical and Tribological Properties of Polymers and Polymer-Based Composites". Chemistry & Chemical Technology 14, n.º 4 (15 de diciembre de 2020): 514–20. http://dx.doi.org/10.23939/chcht14.04.514.
Texto completoChen, Jian Fang y Ai Hua Ling. "Design and Synthesis of a Miktoarm Star PMMAZO-(PCL)2 Copolymer". Advanced Materials Research 332-334 (septiembre de 2011): 2089–92. http://dx.doi.org/10.4028/www.scientific.net/amr.332-334.2089.
Texto completoMartens, C. M., R. Tuinier y M. Vis. "Depletion interaction mediated by semiflexible polymers". Journal of Chemical Physics 157, n.º 15 (21 de octubre de 2022): 154102. http://dx.doi.org/10.1063/5.0112015.
Texto completoShahzadi, Maria, Taimoor Hassan y Sana Saeed. "Application of Natural Polymers in Wound Dressings". Pakistan Journal of Medical and Health Sciences 16, n.º 10 (30 de octubre de 2022): 1–2. http://dx.doi.org/10.53350/pjmhs2216101.
Texto completoCaldona, Eugene B., Ernesto I. Borrego, Ketki E. Shelar, Karl M. Mukeba y Dennis W. Smith. "Ring-Forming Polymerization toward Perfluorocyclobutyl and Ortho-Diynylarene-Derived Materials: From Synthesis to Practical Applications". Materials 14, n.º 6 (18 de marzo de 2021): 1486. http://dx.doi.org/10.3390/ma14061486.
Texto completoEwert, Ernest, Izabela Pospieszna-Markiewicz, Martyna Szymańska, Adrianna Kurkiewicz, Agnieszka Belter, Maciej Kubicki, Violetta Patroniak, Marta A. Fik-Jaskółka y Giovanni N. Roviello. "New N4-Donor Ligands as Supramolecular Guests for DNA and RNA: Synthesis, Structural Characterization, In Silico, Spectrophotometric and Antimicrobial Studies". Molecules 28, n.º 1 (3 de enero de 2023): 400. http://dx.doi.org/10.3390/molecules28010400.
Texto completoBecskereki, Gergely, George Horvai y Blanka Tóth. "The Selectivity of Molecularly Imprinted Polymers". Polymers 13, n.º 11 (28 de mayo de 2021): 1781. http://dx.doi.org/10.3390/polym13111781.
Texto completoChang, L. L., D. L. Raudenbush y S. K. Dentel. "Aerobic and anaerobic biodegradability of a flocculant polymer". Water Science and Technology 44, n.º 2-3 (1 de julio de 2001): 461–68. http://dx.doi.org/10.2166/wst.2001.0802.
Texto completoTesis sobre el tema "Polymers"
Schlindwein, Walkiria Santos. "Conducting polymers and polymer electrolytes". Thesis, University of Leicester, 1990. http://hdl.handle.net/2381/33889.
Texto completoMuangpil, Sairoong. "Functionalised polymers and nanoparticle/polymer blends". Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.654111.
Texto completoChester, Shawn Alexander. "Mechanics of amorphous polymers and polymer gels". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68898.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 345-356).
Many applications of amorphous polymers require a thermo-mechanically coupled large-deformation elasto-viscoplasticity theory which models the strain rate and temperature dependent response of amorphous polymeric materials in a temperature range which spans the glass transition temperature of the material. We have formulated such a theory, and also numerically implemented our theory in a finite element program. The material parameters in the theory have been calibrated for poly(methyl methacrylate), polycarbonate, and Zeonex - a cyclo-olefin polymer. The predictive capabilities of the constitutive theory and its numerical implementation have been validated by comparing the results from a suite of validation experiments against corresponding results from numerical simulations. Amorphous chemically-crosslinked polymers form a relatively new class of thermallyactuated shape-memory polymers. Several biomedical applications for thermally-actuated shape-memory polymers have been proposed/demonstrated in the recent literature. However, actual use of such polymers and devices made from these materials is still quite limited. For the variety of proposed applications to be realized with some confidence in their performance, it is important to develop a constitutive theory for the thermo-mechanical response of these materials and a numerical simulation-based design capability which, when supported with experimental data, will allow for the prediction of the response of devices made from these materials under service conditions. We have developed such a theory and a numerical simulation capability, and demonstrated its utility for modeling the thermo-mechanical response of the shape-memory polymer tBA-PEGDMA. An elastomeric gel is a cross-linked polymer network swollen with a solvent, and certain thermally-responsive gels can undergo large reversible volume changes as they are cycled about a critical temperature. We have developed a thermodynamically-consistent continuum-level theory to describe the coupled mechanical-deformation, fluid permeation, and heat transfer of such gels. We have numerically implemented our theory in a finite element program by writing thermo-chemo-mechanically coupled elements. We show that our theory is capable of simulating swelling, squeezing of fluid by applied mechanical forces, and thermally-responsive swelling/de-swelling of such materials.
by Shawn Alexander Chester.
Ph.D.
Mohagheghian, Iman. "Impact response of polymers and polymer nanocomposites". Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648854.
Texto completoSun, Shuangyi. "Alkoxyphenacyl Polymers: A Novel Photodegradable Polymer Platform". University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1424234383.
Texto completoMichal, Brian. "Multi-Functional Stimuli-Responsive Polymers". Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459440396.
Texto completoSmartt, William Mark. "Formation of microporous polymer via thermally-induced phase transformations in polymer solutions". Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/32853.
Texto completoAmalou, Zhor. "Contribution à l'étude de la structure semi-cristalline des polymères à chaînes semi-rigides". Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210832.
Texto completoDans ce travail, une contribution originale est apportée à cette étude, et cela en combinant diverses techniques expérimentales permettant des mesures calorifiques et structurales en températures et temps réels. L’intérêt c’est porté sur les polymères linéaires aromatiques tels que le polyéthylènes teréphthalate, PET, et le polytriméthylène téréphthalate, PTT, caractérisés par une température de transition vitreuse supérieure à l’ambiante ( Tg > 50°) et une température de fusion élevée (Tm>220°C), offrant ainsi une assez large gamme de température de cristallisation (Tm-Tg). L’étude de la structure semi-cristalline du PET à l’échelle du nanomètre et de la relaxation des phases amorphes présentes dans sa structure est facilitée par l’utilisation d’un diluant amorphe tel que le polyétherimide (PEI), qui forme un mélange miscible avec le PET.
L’utilisation de microscopie de force atomique AFM à haute température a permis d’observer la cristallisation isotherme de PET en temps réel et de décrire ainsi la cristallisation secondaire comme un processus d'épaississement des piles lamellaires. De plus, l’analyse de la structure semi-cristalline du PET et du PTT, dans l’espace direct, sont en faveur d’un modèle structural homogène, où l’épaisseur lamellaire moyenne est légèrement inférieure à l’épaisseur moyenne des régions amorphes interlamellaires. Ces résultats ont permis, d’une part, d’apporter une meilleure interprétation aux données obtenues par diffusion des rayons X aux petits angles (SAXS), et d’autre part, d’ interpréter le comportement de fusion multiple caractéristique des polymères semi-cristallin à chaînes semi-rigides par le seul processus de fusion-recristallisation. Dans l’étude investiguée sur les mélanges PET/PEI et sur le PTT pur, on montre que la cinétique d’un tel processus est particulièrement rapide comparée à la cristallisation. De plus, les observations par AFM et par microscopie optique de même que les mesures SAXS en temps réel ont montré la simultanéité et la compétition existant entre la fusion des cristaux et leur réorganisation durant la chauffe. Par ailleurs, la relaxation des régions amorphes interlamellaires, souvent considérées comme rigides, a pu être mise en évidence par les mesures AFM et SAXS réalisées à haute température sur des échantillons de PET/PEI semi-cristallins.
Doctorat en sciences, Spécialisation physique
info:eu-repo/semantics/nonPublished
Cooke, Richard Hunter III. "THE ENHANCEMENT OF PEROXIDE-CURED FLUOROELASTOMER RUBBER TO METAL BONDING". Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1377022145.
Texto completoYang, Lianyun. "Novel Ferroelectric Behavior in Poly(vinylidene fluoride-co-trifluoroethylene)-Based Random Copolymers". Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1431686125.
Texto completoLibros sobre el tema "Polymers"
Powell, Peter C. Engineering with polymers. 2a ed. Cheltenham: Stanley Thornes, 1998.
Buscar texto completoGodovsky, Yu K., K. Horie, A. Kaneda, N. Kinjo, L. F. Kosyanchuk, Yu S. Lipatov, T. E. Lipatova et al. Speciality Polymers/Polymer Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0017962.
Texto completoAkelah, A. Functionalized polymers and their applications. London: Chapman and Hall, 1990.
Buscar texto completoRubinson, Judith F. y Harry B. Mark, eds. Conducting Polymers and Polymer Electrolytes. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2003-0832.
Texto completoChiellini, Emo, Junzo Sunamoto, Claudio Migliaresi, Raphael M. Ottenbrite y Daniel Cohn, eds. Biomedical Polymers and Polymer Therapeutics. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/b112950.
Texto completoI, Kroschwitz Jacqueline, ed. Polymers: Polymer characterization and analysis. New York: Wiley, 1990.
Buscar texto completoEmo, Chiellini y International Symposium on Frontiers in Biomedical Polymers including Polymer Therapeutics: From Laboratory to Clinical Practice (3rd : 1999 : Shiga, Japan), eds. Biomedical polymers and polymer therapeutics. New York: Kluwer Academic/Plenum Publishers, 2001.
Buscar texto completoDonald, A. M. Liquid crystalline polymers. Cambridge [England]: Cambridge University Press, 1992.
Buscar texto completoEfremovich, Zaikov Gennadiĭ, Bouchachenko A. L y Ivanov V. B, eds. Aging of polymers, polymer blends and polymer composites. New York: Nova Science Publishers, 2002.
Buscar texto completoEfremovich, Zaikov Gennadiĭ, Bouchachenko A. L y Ivanov V. B, eds. Aging of polymers, polymer blends, and polymer composites. New York: Nova Science Publishers, 2002.
Buscar texto completoCapítulos de libros sobre el tema "Polymers"
Xanthos, Marino. "Polymers and Polymer Composites". En Functional Fillers for Plastics, 1–16. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527605096.ch1.
Texto completoXanthos, Marino. "Polymers and Polymer Composites". En Functional Fillers for Plastics, 1–18. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629848.ch1.
Texto completoVoisey, K. T. "Polymers and Polymer Composites". En The Engineer’s Guide to Materials, 97–124. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-62937-2_6.
Texto completoCzarnecki, Lech, Dionys Van Gemert, Ru Wang y Mahmoud Reda Taha. "Searching for a New C-PC Development Paradigm". En Springer Proceedings in Materials, 3–21. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72955-3_1.
Texto completoParisi, Ortensia Ilaria, Manuela Curcio y Francesco Puoci. "Polymer Chemistry and Synthetic Polymers". En Advanced Polymers in Medicine, 1–31. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12478-0_1.
Texto completoBhatia, Saurabh. "Natural Polymers vs Synthetic Polymer". En Natural Polymer Drug Delivery Systems, 95–118. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41129-3_3.
Texto completoBrandrup, Johannes y Wiesbaden. "Polymers, Polymer Recycling, and Sustainability". En Plastics and the Environment, 521–62. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471721557.ch13.
Texto completoWalton, David J. y J. Phillip Lorimer. "General principles and historical aspects". En Polymers. Oxford University Press, 2000. http://dx.doi.org/10.1093/hesc/9780198503897.003.0001.
Texto completoHan, Chang Dae. "Rheology of Particulate-Filled Polymers, Nanocomposites, and Fiber-Reinforced Thermoplastic Composites". En Rheology and Processing of Polymeric Materials: Volume 1: Polymer Rheology. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195187823.003.0018.
Texto completoHan, Chang Dae. "Relationships Between Polymer Rheology and Polymer Processing". En Rheology and Processing of Polymeric Materials: Volume 1: Polymer Rheology. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195187823.003.0005.
Texto completoActas de conferencias sobre el tema "Polymers"
Kim, Bumjoon J. "Design of electroactive polymers for intrinsically-stretchable polymer solar cells". En Organic, Hybrid, and Perovskite Photovoltaics XXV, editado por Gang Li y Natalie Stingelin, 41. SPIE, 2024. http://dx.doi.org/10.1117/12.3029279.
Texto completoLiu, Y. S., H. S. Cole y H. R. Philipp. "Interactions of excimer lasers with polymers". En International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.fb2.
Texto completoZhang, Yadong, Liming Wang, Tatsuo Wada y Hiroyuki Sasabe. "Carbazole Main-Chain Polymers with Di-Acceptor-Substituents for Nonlinear Optics". En Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/otfa.1993.wd.8.
Texto completoInganas, Olle, Soumyadeb Ghosh, Emil J. Samuelsen, Knut E. Aasmundtveit, Leif A. A. Pettersson y Tomas Johansson. "Model polymers for polymer actuators". En 1999 Symposium on Smart Structures and Materials, editado por Yoseph Bar-Cohen. SPIE, 1999. http://dx.doi.org/10.1117/12.349712.
Texto completoBurland, D. M., R. G. Devoe, M. C. Jurich, V. Y. Lee, R. D. Miller, C. R. Moylan, J. I. Thackara, R. J. Twieg, T. Verbiest y W. Volksen. "Incorporation of Thermally Stable Nonlinear Optical Polymers into Electrooptic Devices". En Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.wa.3.
Texto completoKippelen, B., K. Meerholz, B. L. Volodin, Sandalphon y N. Peyghambarian. "High Efficiency Photorefractive Polymers". En Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.wgg.2.
Texto completoLevenson, R., J. Liang, C. Rossier, M. Van Beylen, C. Samyn, F. Foll, Rousseau y J. Zyss. "Stability-Efficiency Trade-Off in Non-Linear Optical Polymers". En Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/otfa.1993.wd.6.
Texto completoWagner, Eva, Kathryn Uhrich y Thomas Twardowski. "Processing Considerations for Salicylic Acid-Based Polymers". En ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-55130.
Texto completoChe, H., P. Vo y S. Yue. "Metallization of Various Polymers by Cold Spray". En ITSC2017, editado por A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen y C. A. Widener. DVS Media GmbH, 2017. http://dx.doi.org/10.31399/asm.cp.itsc2017p0098.
Texto completoMöhlmann, G. R., W. H. G. Horsthuis, M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach y N. McFadyen. "Optically Nonlinear Polymers in Guided Wave Electro-Optic Devices". En Nonlinear Guided-Wave Phenomena. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/nlgwp.1989.fb4.
Texto completoInformes sobre el tema "Polymers"
Stavland, Arne, Siv Marie Åsen, Arild Lohne, Olav Aursjø y Aksel Hiorth. Recommended polymer workflow: Lab (cm and m scale). University of Stavanger, noviembre de 2021. http://dx.doi.org/10.31265/usps.201.
Texto completoLambeth, Robert H., Randy A. Mrozek, Joseph L. Lenhart, Yelena R. Sliozberg y Jan W. Andzelm. Branched Polymers for Enhancing Polymer Gel Strength and Toughness. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2013. http://dx.doi.org/10.21236/ada577092.
Texto completoBohnert, G. W. Conductive Polymers. Office of Scientific and Technical Information (OSTI), noviembre de 2002. http://dx.doi.org/10.2172/804936.
Texto completoSalovey, Ronald y John J. Aklonis. The Behavior of Polymers Filled with Monodisperse Polymeric Beads. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1991. http://dx.doi.org/10.21236/ada242732.
Texto completoPang, Yi. Exploring novel silicon-containing polymers---From preceramic polymers to conducting polymers with nonlinear optical properties. Office of Scientific and Technical Information (OSTI), octubre de 1991. http://dx.doi.org/10.2172/5097635.
Texto completoRussell, Thomas P. Interfacial Behavior of Polymers: Using Interfaces to Manipulate Polymers. Office of Scientific and Technical Information (OSTI), febrero de 2015. http://dx.doi.org/10.2172/1171152.
Texto completoLotufo, Guilherme, Mandy Michalsen, Danny Reible, Philip Gschwend, Upal Ghosh, Alan Kennedy, Kristen Kerns et al. Interlaboratory study of polyethylene and polydimethylsiloxane polymeric samplers for ex situ measurement of freely dissolved hydrophobic organic compounds in sediment porewater. Engineer Research and Development Center (U.S.), mayo de 2024. http://dx.doi.org/10.21079/11681/48512.
Texto completoKempel, Leo y Shanker Balasubramaniam. RF Polymers II. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2009. http://dx.doi.org/10.21236/ada495291.
Texto completoPhillips, Shawn H., Timothy S. Haddad, Rusty L. Blanski, Andre Y. Lee y Richard A. Vaia. Molecularly Reinforced Polymers. Fort Belvoir, VA: Defense Technical Information Center, junio de 2001. http://dx.doi.org/10.21236/ada409917.
Texto completoGordon, III, Runt Bernard, Painter James P. y Paul C. New Conducting Polymers. Fort Belvoir, VA: Defense Technical Information Center, junio de 1988. http://dx.doi.org/10.21236/ada197009.
Texto completo