Artículos de revistas sobre el tema "Polymerization induced phase separation"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Polymerization induced phase separation.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Polymerization induced phase separation".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

LEE, J. C. "POLYMERIZATION-INDUCED PHASE SEPARATION: INTERMEDIATE DYNAMICS". International Journal of Modern Physics C 11, n.º 02 (marzo de 2000): 347–58. http://dx.doi.org/10.1142/s0129183100000328.

Texto completo
Resumen
When phase separation is induced by polymerizating monomers in a mixture of monomers and nonreacting molecules, the dynamics is different depending on the time scale of polymerization τpl and the time scale of phase separation τps. Previous studies have explored the dynamic regimes where τpl ≪ τps and that where τpl ≫ τps. In the former, a spanning gel emerges before the phase separation and the phase separation is driven largely by activation. In the latter, phase separation occurs first between polymers and nonbonding molecules and then the polymers turn into a gel, and therefore the driving mechanism is the same as in the usual liquid–liquid demixing processes. Using Molecular Dynamics simulations, we explore in this paper the intermediate dynamic regime where the two time scales are comparable. When the polymerization is done by means of the thermal condensation reaction, we observe the expected crossover, one limit behavior at early times and then the other at late times. When the polymerization is done by means of the radical addition reaction, the results suggest that the driving mechanism changes more than once.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Lee, J. C. "Polymerization-induced phase separation". Physical Review E 60, n.º 2 (1 de agosto de 1999): 1930–35. http://dx.doi.org/10.1103/physreve.60.1930.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Kuboyama, Keiichi. "Polymer Blend ―Polymerization-induced Phase Separation―". Seikei-Kakou 30, n.º 8 (20 de julio de 2018): 419–23. http://dx.doi.org/10.4325/seikeikakou.30.419.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Shu-Hsia Chen y Wei-Jou Chen. "Kinetics of polymerization-induced phase separation". Physica A: Statistical Mechanics and its Applications 221, n.º 1-3 (noviembre de 1995): 216–22. http://dx.doi.org/10.1016/0378-4371(95)00245-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Boots, H. M. J., J. G. Kloosterboer, C. Serbutoviez y F. J. Touwslager. "Polymerization-Induced Phase Separation. 1. Conversion−Phase Diagrams". Macromolecules 29, n.º 24 (enero de 1996): 7683–89. http://dx.doi.org/10.1021/ma960292h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Zaremski, Mikhail Yu, Elena Yu Kozhunova, Sergey S. Abramchuk, Maria E. Glavatskaya y Alexander V. Chertovich. "Polymerization-induced phase separation in gradient copolymers". Mendeleev Communications 31, n.º 2 (marzo de 2021): 277–79. http://dx.doi.org/10.1016/j.mencom.2021.03.045.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Chan, Philip K. y Alejandro D. Rey. "Polymerization-Induced Phase Separation. 2. Morphological Analysis". Macromolecules 30, n.º 7 (abril de 1997): 2135–43. http://dx.doi.org/10.1021/ma961078w.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Yue, Jun, Honglei Wang, Qian Zhou y Pei Zhao. "Reaction-Induced Phase Separation and Morphology Evolution of Benzoxazine/Epoxy/Imidazole Ternary Blends". Polymers 13, n.º 17 (31 de agosto de 2021): 2945. http://dx.doi.org/10.3390/polym13172945.

Texto completo
Resumen
Introducing multiphase structures into benzoxazine (BOZ)/epoxy resins (ER) blends via reaction-induced phase separation has proved to be promising strategy for improving their toughness. However, due to the limited contrast between two phases, little information is known about the phase morphological evolutions, a fundamental but vital issue to rational design and preparation of blends with different phase morphologies in a controllable manner. Here we addressed this problem by amplifying the difference of polymerization activity (PA) between BOZ and ER by synthesizing a low reactive phenol-3,3-diethyl-4,4′-diaminodiphenyl methane based benzoxazine (MOEA-BOZ) monomer. Results indicated that the PA of ER was higher than that of BOZ. The use of less reactive MOEA-BOZs significantly enlarged their PA difference with ER, and thus increased the extent of phase separation and improved the phase contrast. Phase morphologies varied with the content of ER. As for the phase morphological evolution, a rapid phase separation could occur in the initial homogeneous blends with the polymerization of ER, and the phase morphology gradually evolved with the increase in ER conversion until the ER was used up. The polymerization of ER is not only the driving-force for the phase separation, but also the main factor influencing the phase morphologies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Sicher, Alba, Rabea Ganz, Andreas Menzel, Daniel Messmer, Guido Panzarasa, Maria Feofilova, Richard O. Prum et al. "Structural color from solid-state polymerization-induced phase separation". Soft Matter 17, n.º 23 (2021): 5772–79. http://dx.doi.org/10.1039/d1sm00210d.

Texto completo
Resumen
Inspired by living organisms that exploit phase separation to assemble structurally colored materials from macromolecules, we show that solid-state polymerization-induced phase separation can produce stable structures at optical length scales.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Okada, Mamoru y Toshiki Sakaguchi. "Thermal-History Dependence of Polymerization-Induced Phase Separation". Macromolecules 32, n.º 12 (junio de 1999): 4154–56. http://dx.doi.org/10.1021/ma981744o.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

OKADA, Mamoru. "Morphological Structures Formed in Polymerization Induced Phase Separation." Kobunshi 44, n.º 11 (1995): 748–49. http://dx.doi.org/10.1295/kobunshi.44.748.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Zhu, Yang-Ming. "Monte Carlo simulation of polymerization-induced phase separation". Physical Review E 54, n.º 2 (1 de agosto de 1996): 1645–51. http://dx.doi.org/10.1103/physreve.54.1645.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Okada, M. "Dynamics of phase separation induced by radical polymerization". Macromolecular Symposia 160, n.º 1 (octubre de 2000): 27–34. http://dx.doi.org/10.1002/1521-3900(200010)160:1<27::aid-masy27>3.0.co;2-n.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Benmouna, Farida, Zohra Bouabdellah-Dembahri y Mustapha Benmouna. "Polymerization-induced Phase Separation: Phase Behavior Developments and Hydrodynamic Interaction". Journal of Macromolecular Science, Part B 52, n.º 7 (21 de diciembre de 2012): 998–1008. http://dx.doi.org/10.1080/00222348.2012.748617.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Tenhaeff, Wyatt. "(Invited) Multifunctional Lithium Ion Battery Separators through Polymerization-Induced Phase Separation". ECS Meeting Abstracts MA2022-02, n.º 1 (9 de octubre de 2022): 28. http://dx.doi.org/10.1149/ma2022-02128mtgabs.

Texto completo
Resumen
In state-of-the-art lithium ion batteries, separators (microporous membranes) play a passive yet critical role – hosting liquid electrolyte and maintaining physical separation of the electrodes. However, as the demands on lithium ion batteries increase, with an emphasis on greater energy density, longevity (cycle/calendar life), and safety, engineering separators to take a on more active role in the cell (electro)chemistry is expected to be an important strategy. Myriad membrane materials and separator designs have been developed to impart additional functionality, for example, acid and/or transition metal scavenging, temperature responsiveness, enhanced thermal stability, increased ion dissociation, combustion suppression, and mechanical strength. In this talk, I will preset my group’s approach to additive manufacturing of next-generation lithium ion battery separators. Our approach is based on polymerization induced phase separation (PIPS), wherein polymerizable monomers (or prepolymer resins) are mixed with porogen. Through rapid, low-cost, readily scalable photopolymerization, the monomers are converted to a crosslinked polymer network, which results in the porogen becoming immiscible and phase separating through spinodal decomposition. By tuning the thermodynamics of the polymer-porogen mixture and photopolymerization kinetics, the porosity and pore size of the resulting polymeric phase can be tuned. We have shown that ethylene carbonate (EC) mixed with common acrylate monomers, such as 1,4-butanediol diacrylate, is an effective porogen. Most importantly because EC is an indispensable component in liquid electrolytes, it does not need to be extracted from the separator prior to incorporation into the electrochemical cell. By controlling the ratio of the 1,4-butanediol diacrylate (BDDA) monomer to EC, monolithic microporous membranes are readily prepared with 25 µm thickness and pore sizes and porosities ranging from 6.8 to 22nm and 15.4% to 38.54%, respectively. The optimal poly(1,4-butanediol diacrylate) (pBDDA) separator has a porosity of 38.5% and average pore size of 22 nm; uptakes 127% liquid electrolyte by mass, and has an ionic conductivity of 1.98 mS/cm, which is higher than that of Celgard 2500. Lithium ion battery half cells consisting of LiNi0.5Mn0.3Co0.2O2 cathodes and pBDDA separators were shown to undergo reversible charge/discharge cycling with an average discharge capacity of 142 mAh/g and a capacity retention of 98.4% over 100 cycles - comparable to cells using state-of-the-art separators. Furthermore, the pBDDA separators were shown to be thermally stable to 400°C, lack low temperature thermal transitions that can compromise cell safety, and exhibits no thermal shrinkage up to 150°C. I will also discuss my group’s efforts to engineer separators with additional functionality to improve cell performance under abuse conditions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Miura, Yoshiko, Hirokazu Seto, Makoto Shibuya y Yu Hoshino. "Biopolymer monolith for protein purification". Faraday Discussions 219 (2019): 154–67. http://dx.doi.org/10.1039/c9fd00018f.

Texto completo
Resumen
Porous glycopolymers, “glycomonoliths”, were prepared by radical polymerization based on polymerization-induced phase separation with an acrylamide derivative of α-mannose, acrylamide and cross-linker in order to investigate protein adsorption and separation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Zhang, Pei, Donald C. Sundberg y John G. Tsavalas. "Polymerization Induced Phase Separation in Composite Latex Particles during Seeded Emulsion Polymerization". Industrial & Engineering Chemistry Research 58, n.º 46 (20 de septiembre de 2019): 21118–29. http://dx.doi.org/10.1021/acs.iecr.9b02964.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Stevens, Mark J. "Simulation of polymerization induced phase separation in model thermosets". Journal of Chemical Physics 155, n.º 5 (7 de agosto de 2021): 054905. http://dx.doi.org/10.1063/5.0061654.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Chan, Philip K. y Alejandro D. Rey. "Polymerization-Induced Phase Separation. 1. Droplet Size Selection Mechanism". Macromolecules 29, n.º 27 (enero de 1996): 8934–41. http://dx.doi.org/10.1021/ma960690k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Keizer, Henk M., Rint P. Sijbesma, Johan F. G. A. Jansen, George Pasternack y E. W. Meijer. "Polymerization-Induced Phase Separation Using Hydrogen-Bonded Supramolecular Polymers". Macromolecules 36, n.º 15 (julio de 2003): 5602–6. http://dx.doi.org/10.1021/ma034284u.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Luo, Kaifu. "The morphology and dynamics of polymerization-induced phase separation". European Polymer Journal 42, n.º 7 (julio de 2006): 1499–505. http://dx.doi.org/10.1016/j.eurpolymj.2006.01.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Dubinsky, Stanislav, Alla Petukhova, Ilya Gourevich y Eugenia Kumacheva. "Hybrid porous material produced by polymerization-induced phase separation". Chemical Communications 46, n.º 15 (2010): 2578. http://dx.doi.org/10.1039/b924373a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Chen, Wei-Jou y Shu-Hsia Chen. "Scaling behavior of pinning in polymerization-induced phase separation". Physical Review E 52, n.º 5 (1 de noviembre de 1995): 5696–99. http://dx.doi.org/10.1103/physreve.52.5696.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Nakazawa, Hatsumi, Shinobu Fujinami, Miho Motoyama, Takao Ohta, Takeaki Araki y Hajime Tanaka. "POLYMERIZATION-INDUCED PHASE SEPARATION OF POLYMER-DISPERSED LIQUID CRYSTAL". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 366, n.º 1 (agosto de 2001): 871–78. http://dx.doi.org/10.1080/10587250108024029.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Williams, Roberto J. J., Cristina E. Hoppe, Ileana A. Zucchi, Hernán E. Romeo, Ignacio E. dell’Erba, María L. Gómez, Julieta Puig y Agustina B. Leonardi. "Self-assembly of nanoparticles employing polymerization-induced phase separation". Journal of Colloid and Interface Science 431 (octubre de 2014): 223–32. http://dx.doi.org/10.1016/j.jcis.2014.06.022.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Hamilton, Heather S. C. y Laura C. Bradley. "Probing the morphology evolution of chemically anisotropic colloids prepared by homopolymerization- and copolymerization-induced phase separation". Polymer Chemistry 11, n.º 2 (2020): 230–35. http://dx.doi.org/10.1039/c9py01166h.

Texto completo
Resumen
Chemically anisotropic colloids prepared by polymerization-induced phase separation during seeded emulsion polymerization with non-crosslinked seeds reveals tunability in both surface and interior properties based on the morphology evolution.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Jin, Jian-Min, Kanwall Parbhakar y Le H. Dao. "Effect of Polymerization Reactivity, Interfacial Strength, and Gravity on Polymerization-Induced Phase Separation". Macromolecules 28, n.º 23 (noviembre de 1995): 7937–41. http://dx.doi.org/10.1021/ma00127a047.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Yu, Yingfeng, Minghai Wang, Wenjun Gan, Qingsheng Tao y Shanjun Li. "Polymerization-Induced Viscoelastic Phase Separation in Polyethersulfone-Modified Epoxy Systems". Journal of Physical Chemistry B 108, n.º 20 (mayo de 2004): 6208–15. http://dx.doi.org/10.1021/jp036628o.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Mimura, Koji y Ken Sumiyoshi. "Polymerization-Induced Phase Separation in LC/Light-Curable Resin Mixture". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 330, n.º 1 (1 de agosto de 1999): 23–28. http://dx.doi.org/10.1080/10587259908025572.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Kim, J. Y., C. H. Cho, P. Palffy-Muhoray y T. Kyu. "Polymerization-induced phase separation in a liquid-crystal-polymer mixture". Physical Review Letters 71, n.º 14 (4 de octubre de 1993): 2232–35. http://dx.doi.org/10.1103/physrevlett.71.2232.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Kwok, Alan Y., Emma L. Prime, Greg G. Qiao y David H. Solomon. "Synthetic hydrogels 2. Polymerization induced phase separation in acrylamide systems". Polymer 44, n.º 24 (noviembre de 2003): 7335–44. http://dx.doi.org/10.1016/j.polymer.2003.09.026.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Ding, Yi, Qingqing Zhao, Lei Wang, Leilei Huang, Qizhou Liu, Xinhua Lu y Yuanli Cai. "Polymerization-Induced Self-Assembly Promoted by Liquid–Liquid Phase Separation". ACS Macro Letters 8, n.º 8 (17 de julio de 2019): 943–46. http://dx.doi.org/10.1021/acsmacrolett.9b00435.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Nakanishi, Kazuki, Tomohiko Amatani, Seiji Yano y Tetsuya Kodaira. "Multiscale Templating of Siloxane Gels via Polymerization-Induced Phase Separation†". Chemistry of Materials 20, n.º 3 (febrero de 2008): 1108–15. http://dx.doi.org/10.1021/cm702486b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Kim, Bomi, Tae Yoon Jeon, You-Kwan Oh y Shin-Hyun Kim. "Microfluidic Production of Semipermeable Microcapsules by Polymerization-Induced Phase Separation". Langmuir 31, n.º 22 (28 de mayo de 2015): 6027–34. http://dx.doi.org/10.1021/acs.langmuir.5b01129.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Schneider, Tod, Forrest Nicholson, Asad Khan, J. William Doane y L. C. Chien. "50.4: Flexible Encapsulated Cholesteric LCDs by Polymerization Induced Phase Separation". SID Symposium Digest of Technical Papers 36, n.º 1 (2005): 1568. http://dx.doi.org/10.1889/1.2036311.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Lin, Jian-Cheng y P. L. Taylor. "Polymerization-induced Phase Separation of a Liquid Crystal-Polymer Mixture". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 237, n.º 1 (diciembre de 1993): 25–31. http://dx.doi.org/10.1080/10587259308030120.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Ma, Qing Lan y Yuan Ming Huang. "Phase Separation in Polymer Dispersed Liquid Crystal Device". Materials Science Forum 663-665 (noviembre de 2010): 763–66. http://dx.doi.org/10.4028/www.scientific.net/msf.663-665.763.

Texto completo
Resumen
Polymer dispersed liquid crystal device was prepared by the method of polymerization induced phase separation. The phase separation in our PDLC device was characterized by a polarized optical microscope. Our results demonstrated that the phase-separated droplets in our PDLC device presented the four-brush radial, bipolar and axial configurations. Furthermore, these configurations were simulated by mathematica tool
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Shen, Gebin, Zhongnan Hu, Zhuoyu Liu, Ruiheng Wen, Xiaolin Tang y Yingfeng Yu. "Fabrication of a superhydrophilic epoxy resin surface via polymerization-induced viscoelastic phase separation". RSC Advances 6, n.º 41 (2016): 34120–30. http://dx.doi.org/10.1039/c6ra03832h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Rong, Mingming, Shuanhong Ma, Peng Lin, Meirong Cai, Zijian Zheng y Feng Zhou. "Polymerization induced phase separation as a generalized methodology for multi-layered hydrogel tubes". Journal of Materials Chemistry B 7, n.º 22 (2019): 3505–11. http://dx.doi.org/10.1039/c9tb00185a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Xu, Shunjian, Yufeng Luo, Wei Zhong, Zonghu Xiao, Yongping Luo, Hui Ou y Xing-Zhong Zhao. "Facile synthesis of gradient mesoporous carbon monolith based on polymerization-induced phase separation". Functional Materials Letters 07, n.º 05 (26 de agosto de 2014): 1450055. http://dx.doi.org/10.1142/s1793604714500556.

Texto completo
Resumen
In this paper, a gradient mesoporous carbon (GMC) monolith derived from the mixtures of phenolic resin (PF) and ethylene glycol (EG) was prepared by a facile route based on polymerization-induced phase separation under temperature gradient (TG). A graded biphasic structure of PF-rich and EG-rich phases was first formed in preform under a TG, and then the preform was pyrolyzed to obtain the GMC monolith. The TG is mainly induced by the thermal resistance of the preferential phase separation layer at high temperature region. The pore structure of the monolith changes gradually along the TG direction. When the TG varies from 58°C to 29°C, the pore size, apparent porosity and specific surface area of the monolith range respectively from 18 nm to 83 nm, from 32% to 39% and from 140.5 m2/g to 515.3 m2/g. The gradient porous structure of the monolith is inherited from that of the preform, which depends on phase separation under TG in the resin mixtures. The pyrolysis mainly brings about the contraction of the pore size and wall thickness as well as the transformation of polymerized PF into glassy carbon.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Guo, Xingzhong, Rui Wang, Huan Yu, Yang Zhu, Kazuki Nakanishi, Kazuyoshi Kanamori y Hui Yang. "Spontaneous preparation of hierarchically porous silica monoliths with uniform spherical mesopores confined in a well-defined macroporous framework". Dalton Transactions 44, n.º 30 (2015): 13592–601. http://dx.doi.org/10.1039/c5dt01672j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Ghaffari, Shima, Philip K. Chan y Mehrab Mehrvar. "Long-Range Surface-Directed Polymerization-Induced Phase Separation: A Computational Study". Polymers 13, n.º 2 (14 de enero de 2021): 256. http://dx.doi.org/10.3390/polym13020256.

Texto completo
Resumen
The presence of a surface preferably attracting one component of a polymer mixture by the long-range van der Waals surface potential while the mixture undergoes phase separation by spinodal decomposition is called long-range surface-directed spinodal decomposition (SDSD). The morphology achieved under SDSD is an enrichment layer(s) close to the wall surface and a droplet-type structure in the bulk. In the current study of the long-range surface-directed polymerization-induced phase separation, the surface-directed spinodal decomposition of a monomer–solvent mixture undergoing self-condensation polymerization was theoretically simulated. The nonlinear Cahn–Hilliard and Flory–Huggins free energy theories were applied to investigate the phase separation phenomenon. The long-range surface potential led to the formation of a wetting layer on the surface. The thickness of the wetting layer was found proportional to time t*1/5 and surface potential parameter h11/5. A larger diffusion coefficient led to the formation of smaller droplets in the bulk and a thinner depletion layer, while it did not affect the thickness of the enrichment layer close to the wall. A temperature gradient imposed in the same direction of long-range surface potential led to the formation of a stripe morphology near the wall, while imposing it in the opposite direction of surface potential led to the formation of large particles at the high-temperature side, the opposite side of the interacting wall.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Cheng, Haiming, Huafei Xue, Guangdong Zhao, Changqing Hong y Xinghong Zhang. "Preparation, characterization, and properties of graphene-based composite aerogels via in situ polymerization and three-dimensional self-assembly from graphene oxide solution". RSC Advances 6, n.º 82 (2016): 78538–47. http://dx.doi.org/10.1039/c6ra08823f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Wang, Ye, Chao Li, Lei Ma, Xiyu Wang, Kai Wang, Xinhua Lu y Yuanli Cai. "Interfacial Liquid–Liquid Phase Separation-Driven Polymerization-Induced Electrostatic Self-Assembly". Macromolecules 54, n.º 12 (8 de junio de 2021): 5577–85. http://dx.doi.org/10.1021/acs.macromol.1c00756.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Oh, J. y A. D. Rey. "Computational simulation of polymerization-induced phase separation under a temperature gradient". Computational and Theoretical Polymer Science 11, n.º 3 (junio de 2001): 205–17. http://dx.doi.org/10.1016/s1089-3156(00)00013-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Kaji, Hironori, Kazuki Nakanishi y Naohiro Soga. "Polymerization-induced phase separation in silica sol-gel systems containing formamide". Journal of Sol-Gel Science and Technology 1, n.º 1 (1993): 35–46. http://dx.doi.org/10.1007/bf00486427.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Tang, Yong, Kejian Wu, Shudong Yu, Junchi Chen, Xinrui Ding, Longshi Rao y Zongtao Li. "Bioinspired high-scattering polymer films fabricated by polymerization-induced phase separation". Optics Letters 45, n.º 10 (15 de mayo de 2020): 2918. http://dx.doi.org/10.1364/ol.390639.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Wang, Xin, Mamoru Okada, Yuichiro Matsushita, Hidemitsu Furukawa y Charles C. Han. "Crystal-like Array Formation in Phase Separation Induced by Radical Polymerization". Macromolecules 38, n.º 16 (agosto de 2005): 7127–33. http://dx.doi.org/10.1021/ma050896y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Yi, Xiaolin, Lei Kong, Xia Dong, Xiaobiao Zuo, Xiao Kuang, Zhihai Feng y Dujin Wang. "Polymerization induced viscoelastic phase separation of porous phenolic resin from solution". Polymer International 65, n.º 9 (18 de mayo de 2016): 1031–38. http://dx.doi.org/10.1002/pi.5147.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Oh, Junsuk y Alejandro D. Rey. "Theory and simulation of polymerization-induced phase separation in polymeric media". Macromolecular Theory and Simulations 9, n.º 8 (1 de noviembre de 2000): 641–60. http://dx.doi.org/10.1002/1521-3919(20001101)9:8<641::aid-mats641>3.0.co;2-e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía