Literatura académica sobre el tema "Polymerization"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Polymerization".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Polymerization"
Chen, Mao, Honghong Gong y Yu Gu. "Controlled/Living Radical Polymerization of Semifluorinated (Meth)acrylates". Synlett 29, n.º 12 (18 de abril de 2018): 1543–51. http://dx.doi.org/10.1055/s-0036-1591974.
Texto completoPenczek, Stanislaw, Julia Pretula y Stanislaw Slomkowski. "Ring-opening polymerization". Chemistry Teacher International 3, n.º 2 (15 de marzo de 2021): 33–57. http://dx.doi.org/10.1515/cti-2020-0028.
Texto completoCheah, Pohlee, Caitlin N. Bhikha, John H. O’Haver y Adam E. Smith. "Effect of Oxygen and Initiator Solubility on Admicellar Polymerization of Styrene on Silica Surfaces". International Journal of Polymer Science 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/6308603.
Texto completoPrescott, S. W., M. J. Ballard, E. Rizzardo y R. G. Gilbert. "RAFT in Emulsion Polymerization: What Makes it Different?" Australian Journal of Chemistry 55, n.º 7 (2002): 415. http://dx.doi.org/10.1071/ch02073.
Texto completoLowe, A. B. y C. L. McCormick. "Homogeneous Controlled Free Radical Polymerization in Aqueous Media". Australian Journal of Chemistry 55, n.º 7 (2002): 367. http://dx.doi.org/10.1071/ch02053.
Texto completoZhang, Xiaoqian, Wenli Guo, Yibo Wu, Liangfa Gong, Wei Li, Xiaoning Li, Shuxin Li, Yuwei Shang, Dan Yang y Hao Wang. "Cationic polymerization of p-methylstyrene in selected ionic liquids and polymerization mechanism". Polymer Chemistry 7, n.º 32 (2016): 5099–112. http://dx.doi.org/10.1039/c6py00796a.
Texto completoJenkins, Aubrey D., Richard G. Jones y Graeme Moad. "Terminology for reversible-deactivation radical polymerization previously called "controlled" radical or "living" radical polymerization (IUPAC Recommendations 2010)". Pure and Applied Chemistry 82, n.º 2 (18 de noviembre de 2009): 483–91. http://dx.doi.org/10.1351/pac-rep-08-04-03.
Texto completoHU, ZHIGANG y DAN ZHAO. "POLYMERIZATION WITHIN CONFINED NANOCHANNELS OF POROUS METAL-ORGANIC FRAMEWORKS". Journal of Molecular and Engineering Materials 01, n.º 02 (junio de 2013): 1330001. http://dx.doi.org/10.1142/s2251237313300015.
Texto completoWang, Qiao, Jin Liang Li, Ai Ping Fu y Hong Liang Li. "Effect Factors on the Preparation of Polystyrene Microspheres by Emulsifier-Free Emulsion Polymerization". Advanced Materials Research 926-930 (mayo de 2014): 304–7. http://dx.doi.org/10.4028/www.scientific.net/amr.926-930.304.
Texto completoZhang, Jie, Zhiming Zhang, Fulin Yang, Haoke Zhang, Jingzhi Sun y Benzhong Tang. "Metal-Free Catalysts for the Polymerization of Alkynyl-Based Monomers". Catalysts 11, n.º 1 (22 de diciembre de 2020): 1. http://dx.doi.org/10.3390/catal11010001.
Texto completoTesis sobre el tema "Polymerization"
Hajime, Kammiyada. "Ring-Expansion Cationic Polymerization:A New Precision Polymerization for Cyclic Polymers". 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225628.
Texto completoAran, Bengi. "Polymerization And Characterization Of Methylmethacrylate By Atom Transfer Radical Polymerization". Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605042/index.pdf.
Texto completodimethyl 2,2&rsquo
bipyridine. Polymers with controlled molecular weight were obtained. The polymer chains were shown by NMR investigation to be mostly syndiotactic. The molecular weight and molecular weight distribution of some polymer samples were measured by GPC method. The K and a constants in [h]=K Ma equation were measured as 9.13x10-5 and 0.74, respectively. FT-IR and X-Ray results showed regularity in polymer chains. The molecular weight-Tg relations were verified from results of molecular weight-DSC results.
Barnette, Darrell Thomas. "Continuous miniemulsion polymerization". Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/12518.
Texto completoEndsor, Robert M. "Living cationic polymerization". Thesis, Aston University, 1997. http://publications.aston.ac.uk/9597/.
Texto completoBrodsky, Colin John. "Graft polymerization lithography". Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3024998.
Texto completoVale, Hugo. "Population Balance Modeling of Emulsion Polymerization Reactors : applications to Vinyl Chloride Polymerization". Lyon 1, 2007. http://www.theses.fr/2007LYO10034.
Texto completoCette thèse est une contribution au développement de modèles mécanistiques de la polymérisation en émulsion et, plus particulièrement, une contribution à la modélisation de la formation des particules et de leur distribution de taille (DTP) lors de la polymérisation en émulsion du chlorure de vinyle. La première partie de l'étude est consacrée à l'obtention de données expérimentales. Des polymérisations ab initio ont été réalisées afin d'obtenir des données fiables sur l'effet de la concentration de tensioactif, concentration d'initiateur, vitesse d'agitation et rapport monomère/eau sur le nombre de particules formées et sur la cinétique de polymérisation. Des polymérisations ensemencées ont également été réalisées afin de déterminer l'influence de la quantité de semence et de la concentration de tensioactif sur la formation de particules par nucléation secondaire. Enfin, les isothermes d'adsorption du SDS et du SDBS sur des particules de latex de poly (chlorure de vinyle) ont été déterminées. La deuxième partie de l'étude concerne le développement et la validation du modèle de polymérisation. Celui-ci à la particularité d'utiliser les bilans de population propres aux systèmes ‘zéro-un-deux' pour déterminer la distribution jointe du nombre de radicaux et de la taille des particules. Dans l'ensemble, les résultats obtenus montrent que le modèle proposé est capable de décrire les principaux comportements retrouvés lors des polymérisations avec des valeurs physiquement plausibles des paramètres inconnus ou ajustables. Pour ce qui concerne la formation des particules, il s'avère que la prise en compte de la possibilité de nucléation (homogène ou micellaire) par les radicaux désorbés aide à expliquer les valeurs élevées du nombre de particules ainsi que l'effet négligeable de la concentration d'initiateur sur le nombre de particules. En autre, il est démontré que le phénomène d'agrégation des particules doit être pris en considération afin d'obtenir des DTPs cohérentes. Dans la troisième et dernière partie, deux nouvelles méthodes numériques pour la résolution de bilans de population d'intérêt pour la modélisation des systèmes de polymérisation en émulsion sont proposées et analysées
Ding, Shijie. "Atom transfer radical polymerization". Laramie, Wyo. : University of Wyoming, 2006. http://proquest.umi.com/pqdweb?did=1225138911&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Texto completoSong, Zhiqiang. "Kinetics of emulsion polymerization". Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/10148.
Texto completoWong, Ji Sam. "Modeling polymerization-based amplification". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104123.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 117-120).
Eosin, a photoreducible xanthene derivative, acts as a Type II photoinitiator of free radical polymerizations when used in combination with alcohols or amines as co-initiators. Previous work utilizing eosin in polymerizations focused on high concentrations of initiators but it has recently been gaining use in bio-applications at lower concentrations due to its ability to initiate polymerizations when illuminated by harmless visible light even in the presence of orders-of-magnitude larger amounts of dissolved oxygen which acts as an inhibitor. We investigated the mechanism behind eosin's role in the polymerization process and its ability to initiate polymerization at concentrations lower than that of oxygen. A series of model simulation studies that systematically examined the effects of including additional elementary reactions based on proposed reactions in published literature into the classical free radical polymerization scheme without fitting any unknown parameters to experimental results were performed and analyzed. The first study examined the effect on having an eosin regeneration reaction between the reduced eosin radical which is formed during the photogeneration of free radicals, and the peroxy radical formed by inhibiting reactions of propagating radicals with oxygen. This reaction results in an unreactive hydroperoxy species and the regeneration of ground state eosin which can then produce even more radicals that undergo propagation. The simulation results indicated that the additional eosin regeneration reaction did explain eosin's ability to initiate polymerization at lower concentrations than oxygen, but the best predicted times required for the formation of polymer was larger than experiments by an order of magnitude, suggesting that the reaction scheme was incomplete. We subsequently incorporated an amine chain peroxidation reaction into the overall reaction scheme and determined the effects of such a change. The amine chain peroxidation reaction involves the peroxy radical extracting a hydrogen atom from the tertiary amines present in the reaction mixture, forming an unreactive hydroperoxide species and an amino-radical that can further undergo propagation. The addition of this reaction greatly increased the rate of oxygen consumption and reduced the predicted polymerization times to an order of magnitude lower than experiments. In addition to purely kinetic studies on the overall reaction scheme, a one-dimensional reaction-diffusion model was also created to understand the effects of having a continuously diffusing oxygen flux on the overall polymerization process. The time course of polymerization and spatial variations when using the various reaction schemes were analyzed and contrasted. The models predicted the formation of a reaction front which forms at the onset of polymerization and slowly moves towards the closed surface, tracking the diffusion of oxygen back into the reaction system. A surface region of higher eosin concentrations was also simulated to model the effects of binding events occurring in polymerization-based amplification (PBA). The addition of a small amount of eosin on the surface resulted in slightly faster predicted polymerization times close to the surface, similar to experimental observations where a surface polymer is first formed before the whole solution polymerizes where binding events have occurred.
by Ji Sam Wong.
Ph. D.
Qi, Genggeng. "Unconventional radical miniemulsion polymerization". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26547.
Texto completoCommittee Chair: Jones, Christopher W.; Committee Chair: Schork, F. Joseph; Committee Member: Koros, William J.; Committee Member: Lyon, Andrew; Committee Member: Nenes, Athanasios. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Libros sobre el tema "Polymerization"
Hadjichristidis, Nikos y Akira Hirao, eds. Anionic Polymerization. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54186-8.
Texto completoBelfield, Kevin D. y James V. Crivello, eds. Photoinitiated Polymerization. Washington, DC: American Chemical Society, 2003. http://dx.doi.org/10.1021/bk-2003-0847.
Texto completoArjunan, Palanisamy, James E. McGrath y Thomas L. Hanlon, eds. Olefin Polymerization. Washington, DC: American Chemical Society, 1999. http://dx.doi.org/10.1021/bk-2000-0749.
Texto completoFaust, Rudolf y Timothy D. Shaffer, eds. Cationic Polymerization. Washington, DC: American Chemical Society, 1997. http://dx.doi.org/10.1021/bk-1997-0665.
Texto completoQin, Anjun y Ben Zhong Tang, eds. Click Polymerization. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788010108.
Texto completoBuchmeiser, Michael R., ed. Metathesis Polymerization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b101315.
Texto completoR, Buchmeiser Michael, ed. Metathesis polymerization. Berlin: Springer, 2005.
Buscar texto completo1960-, Belfield Kevin y Crivello James V. 1940-, eds. Photoinitiated polymerization. Washington, DC: American Chemical Society, 2003.
Buscar texto completoKennedy, Joseph Paul. Carbocationic polymerization. Malabar, Fla: Krieger Pub. Co., 1991.
Buscar texto completoYasuda, H. Plasma polymerization. Orlando: Academic Press, 1985.
Buscar texto completoCapítulos de libros sobre el tema "Polymerization"
Ambade, Ashootosh V. "Ring-Opening Polymerization and Metathesis Polymerizations". En Metal-Catalyzed Polymerization, 137–60. Boca Raton : CRC Press, 2018.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153919-4.
Texto completoTadros, Tharwat. "Polymerization". En Encyclopedia of Colloid and Interface Science, 995–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20665-8_134.
Texto completoGooch, Jan W. "Polymerization". En Encyclopedic Dictionary of Polymers, 564. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_9133.
Texto completoDyson, R. W. "Polymerization". En Specialty Polymers, 20–37. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-7894-9_3.
Texto completoDyson, R. W. "Polymerization". En Specialty Polymers, 19–36. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-009-0025-7_3.
Texto completoMishra, Munmaya y Biao Duan. "Polymerization". En The Essential Handbook of Polymer Terms and Attributes, 175. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003161318-171.
Texto completoMILLER, I. K. y J. ZIMMERMAN. "Condensation Polymerization and Polymerization Mechanisms". En ACS Symposium Series, 159–73. Washington, D.C.: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0285.ch008.
Texto completoRatkanthwar, Kedar, Junpeng Zhao, Hefeng Zhang, Nikos Hadjichristidis y Jimmy Mays. "Schlenk Techniques for Anionic Polymerization". En Anionic Polymerization, 3–18. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54186-8_1.
Texto completoChen, Yougen, Keita Fuchise, Toshifumi Satoh y Toyoji Kakuchi. "Group Transfer Polymerization of Acrylic Monomers". En Anionic Polymerization, 451–94. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54186-8_10.
Texto completoLi, Zhong y Durairaj Baskaran. "Surface-Initiated Anionic Polymerization from Nanomaterials". En Anionic Polymerization, 495–537. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54186-8_11.
Texto completoActas de conferencias sobre el tema "Polymerization"
Jaiswal, Arun, Sweta Rani, Gaurav Pratap Singh, Akanksha Sharma, Aman Singhal, Sumit Saxena y Shobha Shukla. "Combining Single and Two -photon Polymerization: An Approach to Generate Laminated Anticounterfeiting Tags". En Frontiers in Optics, JD4A.81. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jd4a.81.
Texto completoJohnson, Jason E., Yijie Chen, Paul Somers y Xianfan Xu. "Modeling of polymerization kinetics in femtosecond two photon polymerization". En Synthesis and Photonics of Nanoscale Materials XVIII, editado por Andrei V. Kabashin, Jan J. Dubowski, David B. Geohegan y Maria Farsari. SPIE, 2021. http://dx.doi.org/10.1117/12.2581960.
Texto completoCademartiri, Ludovico, Reihaneh Malakooti, Georg von Freymann, Yasemin Akçakir, André C. Arsenault, Srebri Petrov, Andrea Migliori et al. "Nanocrystal Plasma Polymerization". En PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730258.
Texto completoPojman, John. "Frontal polymerization in microgravity". En 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-813.
Texto completoJohnson, Heather F., Sahban N. Ozair, Andrew T. Jamieson, Brian C. Trinque, Colin C. Brodsky y C. Grant Willson. "Cationic graft polymerization lithography". En Microlithography 2003, editado por Roxann L. Engelstad. SPIE, 2003. http://dx.doi.org/10.1117/12.484974.
Texto completoCENTELLAS, POLETTE, MOSTAFA YOURDKHANI, IAN D. ROBERTSON, JEFFREY S. MOORE, NANCY R. SOTTOS y SCOTT R. WHITE. "Frontal Polymerization of Dicyclopentadiene". En American Society for Composites 2017. Lancaster, PA: DEStech Publications, Inc., 2017. http://dx.doi.org/10.12783/asc2017/15291.
Texto completoWang, Chunhong y Ming Zhang. "Study on the Self-polymerization and Co-polymerization Properties of Gadolinium Methacrylate". En International Conference on Industrial Application Engineering 2017. The Institute of Industrial Applications Engineers, 2017. http://dx.doi.org/10.12792/iciae2017.022.
Texto completoZhang, Yujuan, Jing Xu, Mengting Duan, Dandan Zhu, Defeng Wu, Ming Zhang y Chunhong Wang. "An Investigation on Self-polymerization and Co-polymerization Properties of Lead Methacrylate". En International Conference on Industrial Application Engineering 2019. The Institute of Industrial Applications Engineers, 2019. http://dx.doi.org/10.12792/iciae2019.015.
Texto completoLiu, Ting, Shi-Jian Chen y Bo-Quan Jiang. "Preparation of Methylphenylvinyl Raw Rubber by Bulk Polymerization and Ring-Opening Polymerization Methods". En 2015 International Conference on Material Science and Applications (icmsa-15). Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmsa-15.2015.61.
Texto completoClare, D., G. Gharst y T. Sanders. "Transglutaminase Polymerization of Peanut Proteins". En 13th World Congress of Food Science & Technology. Les Ulis, France: EDP Sciences, 2006. http://dx.doi.org/10.1051/iufost:20060479.
Texto completoInformes sobre el tema "Polymerization"
Matyjaszewski, Krzysztof. Introduction of Living Polymerization. Living and/or Controlled Polymerization. Fort Belvoir, VA: Defense Technical Information Center, junio de 1994. http://dx.doi.org/10.21236/ada280800.
Texto completoTaylor, C. y C. Wilkerson. Surface polymerization agents. Office of Scientific and Technical Information (OSTI), diciembre de 1996. http://dx.doi.org/10.2172/442223.
Texto completoSchrock, Richard R. Ring Opening Metathesis Polymerization. Fort Belvoir, VA: Defense Technical Information Center, enero de 1992. http://dx.doi.org/10.21236/ada244693.
Texto completoTumas, W., K. Ott y R. T. Baker. Heterogeneous oxidative and polymerization processes. Office of Scientific and Technical Information (OSTI), noviembre de 1998. http://dx.doi.org/10.2172/672308.
Texto completoGrubbs, Robert H. Living Catalysts for Cyclohexdiene Polymerization. Fort Belvoir, VA: Defense Technical Information Center, julio de 1996. http://dx.doi.org/10.21236/ada326125.
Texto completoChen, Peng. Single-Molecule Visualization of Living Polymerization. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2014. http://dx.doi.org/10.21236/ada606984.
Texto completoAdnani-Gleason, Z. Polymerization of Amino Acids on Kaolinite. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.2372.
Texto completoKatz, Thomas J. Polymer Syntheses and Mechanisms of Polymerization. Fort Belvoir, VA: Defense Technical Information Center, marzo de 1991. http://dx.doi.org/10.21236/ada233034.
Texto completoHurlbutt, Katey. Silicone Resins for Vat Polymerization Printing. Office of Scientific and Technical Information (OSTI), marzo de 2024. http://dx.doi.org/10.2172/2318929.
Texto completoWaite, J. H. Polymerization of Quinone-Crosslinked Marine Bioadhesive Protein. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1988. http://dx.doi.org/10.21236/ada200224.
Texto completo