Literatura académica sobre el tema "Polyamide 11 (PA11)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Polyamide 11 (PA11)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Polyamide 11 (PA11)"
Bahrami, Mohsen, Juana Abenojar y Miguel Angel Martínez. "Comparative Characterization of Hot-Pressed Polyamide 11 and 12: Mechanical, Thermal and Durability Properties". Polymers 13, n.º 20 (15 de octubre de 2021): 3553. http://dx.doi.org/10.3390/polym13203553.
Texto completoLao, S. C., J. H. Koo, T. J. Moon, M. Londa, C. C. Ibeh, G. E. Wissler y L. A. Pilato. "Flame-retardant polyamide 11 nanocomposites: further thermal and flammability studies". Journal of Fire Sciences 29, n.º 6 (22 de junio de 2011): 479–98. http://dx.doi.org/10.1177/0734904111404658.
Texto completoKhan, Zahid Iqbal, Zurina Binti Mohamad, Abdul Razak Bin Rahmat, Unsia Habib y Nur Amira Sahirah Binti Abdullah. "A novel recycled polyethylene terephthalate/polyamide 11 (rPET/PA11) thermoplastic blend". Progress in Rubber, Plastics and Recycling Technology 37, n.º 3 (15 de marzo de 2021): 233–44. http://dx.doi.org/10.1177/14777606211001074.
Texto completoWang, Sheng Qin, Mohit Sharma y Yew Wei Leong. "Polyamide 11/Clay Nanocomposite Using Polyhedral Oligomeric Silsesquioxane Surfactants". Advanced Materials Research 1110 (junio de 2015): 65–68. http://dx.doi.org/10.4028/www.scientific.net/amr.1110.65.
Texto completoLods, Louise, Tutea Richmond, Jany Dandurand, Eric Dantras, Colette Lacabanne, Jean-Michel Durand, Edouard Sherwood, Gilles Hochstetter y Philippe Ponteins. "Continuous Bamboo Fibers/Fire-Retardant Polyamide 11: Dynamic Mechanical Behavior of the Biobased Composite". Polymers 14, n.º 2 (12 de enero de 2022): 299. http://dx.doi.org/10.3390/polym14020299.
Texto completoGunputh, Urvashi F., Gavin Williams, Marzena Pawlik, Yiling Lu y Paul Wood. "Effect of Powder Bed Fusion Laser Sintering on Dimensional Accuracy and Tensile Properties of Reused Polyamide 11". Polymers 15, n.º 23 (2 de diciembre de 2023): 4602. http://dx.doi.org/10.3390/polym15234602.
Texto completoOulmou, F., A. Benhamida, A. Dorigato, A. Sola, M. Messori y A. Pegoretti. "Effect of expandable and expanded graphites on the thermo-mechanical properties of polyamide 11". Journal of Elastomers & Plastics 51, n.º 2 (18 de junio de 2018): 175–90. http://dx.doi.org/10.1177/0095244318781956.
Texto completoLi, Yongjin, Yuko Iwakura y Hiroshi Shimizu. "Crystal Form and Phase Structure of Poly(vinylidene fluoride)/Polyamide 11/Clay Nanocomposites by High-Shear Processing". Journal of Nanoscience and Nanotechnology 8, n.º 4 (1 de abril de 2008): 1714–20. http://dx.doi.org/10.1166/jnn.2008.18235.
Texto completoSahnoune, Mohamed, Mustapha Kaci, Aurélie Taguet, Karl Delbé, Samir Mouffok, Said Abdi, José-Marie Lopez-Cuesta y Walter W. Focke. "Tribological and mechanical properties of polyamide-11/halloysite nanotube nanocomposites". Journal of Polymer Engineering 39, n.º 1 (19 de diciembre de 2018): 25–34. http://dx.doi.org/10.1515/polyeng-2018-0131.
Texto completoTey, Wei Shian, Chao Cai y Kun Zhou. "A Comprehensive Investigation on 3D Printing of Polyamide 11 and Thermoplastic Polyurethane via Multi Jet Fusion". Polymers 13, n.º 13 (29 de junio de 2021): 2139. http://dx.doi.org/10.3390/polym13132139.
Texto completoTesis sobre el tema "Polyamide 11 (PA11)"
Landreau, Emmanuel. "Matériaux issus de ressources renouvelables. Mélanges amidon plastifié/PA11 compatibilisés". Reims, 2008. http://theses.univ-reims.fr/exl-doc/GED00000801.pdf.
Texto completoTo develop renewable resources based material, plasticized starch were blend with polyamide 11, a bio-based polymer from castor oil, to improve its mechanical properties and water resistance. Through the high polarity of the amide group, the blends need a compatibilizer to be efficient. The different molecules tested are polysaccharides with anionic groups known to interact with polyamide: sodium alginate, carraghenan and sodium carboxymethylcellulose. Tests runs in blender show that only sodium carboxymethylcellulose (CMC) can improve blend tensile properties. Optimization of the plasticizer, the compatibilizer level and the blend process lead to a mainly starch based material (70%) with a high tensile strength (15 MPa) and elongation at break (130%) with only 1% of CMC. These materials were blends in a twin screw extruder to be studied. SEM, solvent extraction, rheology and electrical resistance mesurment show a continuous PA phase up to 80% of starch. The polysaccharide has a mainly nodular morphology with a partial percolation around 30% starch. Isolated nodules co-exist with a co-continous structure up very high starch content. CMC reduce interfacial tension and nodule size preventing their coalescence. Compostability test on blends, show that starch mineralization is complete whatever its concentration is, but PA remain resistant to biodegradation
Le, Cras Guillaume. "Ιmpact sur les prοpriétés barrière de matériaux biοsοurcés multicοuches. Relatiοns mise en οeuvre-mοrphοlοgie-prοpriétés". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR094.
Texto completoThe aim of this thesis project is to design multilayer films based on biobased polymers by using multilayer coextrusion, with the aim of both improving barrier properties to small molecules and mechanical properties. The choice of the two polymers, those are polyamide 11 (PA11) and polylactic acid (PLA), is based on their complementary properties. Higher melting and crystallization temperatures of PA11 makes him the polymer confining PLA, which induces a confinement effect into multilayer films. The study therefore focuses on the elaboration of multilayer films from some grades of PLA, in order to better understand the effect of PLA crystalline structure on film performances. Post-treatment by annealing and stretching is applied to films in order to increase the degree of crystallinity and modify the crystalline orientation of PLA to optimize barrier properties. The thesis project also explores the feasibility of a PLA/PLA multilayer film to determine the effect of confinement in a single-component system. Finally, the impact of incorporating natural additives into PA11/PLA multilayer films is being investigated in order to improve functional properties and provide specific characteristics such as antibacterial or antioxidant properties
Capítulos de libros sobre el tema "Polyamide 11 (PA11)"
Bashford, David. "Polyamide 11 (PA11)". En Thermoplastics, 290–92. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1531-2_49.
Texto completoActas de conferencias sobre el tema "Polyamide 11 (PA11)"
Sperry, McKay, Annie Busath, Michael Ottesen, Jacob Heslington y Nathan Crane. "Post-Processing and Material Properties of Nylon 12 Prepared by Laser-Powder Bed Fusion". En ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-69053.
Texto completo