Siga este enlace para ver otros tipos de publicaciones sobre el tema: Poincaré-Steklov operators.

Artículos de revistas sobre el tema "Poincaré-Steklov operators"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 29 mejores artículos de revistas para su investigación sobre el tema "Poincaré-Steklov operators".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Novikov, R. G. y I. A. Taimanov. "Darboux Moutard Transformations and Poincaré—Steklov Operators". Proceedings of the Steklov Institute of Mathematics 302, n.º 1 (agosto de 2018): 315–24. http://dx.doi.org/10.1134/s0081543818060160.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Deparis, Simone, Marco Discacciati, Gilles Fourestey y Alfio Quarteroni. "Fluid–structure algorithms based on Steklov–Poincaré operators". Computer Methods in Applied Mechanics and Engineering 195, n.º 41-43 (agosto de 2006): 5797–812. http://dx.doi.org/10.1016/j.cma.2005.09.029.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Demidov, A. S. y A. S. Samokhin. "Explicit Numerically Implementable Formulas for Poincaré–Steklov Operators". Computational Mathematics and Mathematical Physics 64, n.º 2 (febrero de 2024): 237–47. http://dx.doi.org/10.1134/s0965542524020040.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Natarajan, Ramesh. "Domain Decomposition Using Spectral Expansions of Steklov–Poincaré Operators". SIAM Journal on Scientific Computing 16, n.º 2 (marzo de 1995): 470–95. http://dx.doi.org/10.1137/0916029.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Xu, Jinchao y Shuo Zhang. "Norms of Discrete Trace Functions of (Ω) and (Ω)". Computational Methods in Applied Mathematics 12, n.º 4 (2012): 500–512. http://dx.doi.org/10.2478/cmam-2012-0025.

Texto completo
Resumen
AbstractThis paper discusses the constructive and computational presentations of several non-local norms of discrete trace functions of H¹(Ω) and H²(Ω) defined on the boundary or interface of an unstructured grid. We transform the nonlocal norms of trace functions to local norms of certain functions defined on the whole domain by constructing isomorphic extension operators. A unified approach is used to explore several typical examples. Additionally, we also discuss exactly invertible Poincaré–Steklov operators and their discretization.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

ACHDOU, YVES y FREDERIC NATAF. "PRECONDITIONERS FOR THE MORTAR METHOD BASED ON LOCAL APPROXIMATIONS OF THE STEKLOV-POINCARÉ OPERATOR". Mathematical Models and Methods in Applied Sciences 05, n.º 07 (noviembre de 1995): 967–97. http://dx.doi.org/10.1142/s0218202595000516.

Texto completo
Resumen
Many implicit Navier-Stokes solvers involve the discretization of an elliptic partial differential equation of the type −Δu+ηu=f, where η is a large positive parameter. The discretization studied here is the mortar finite element method, a domain decomposition method allowing nonmatching meshes at subdomains interfaces. Two kinds of improvements are proposed here in order to reduce the condition number of the corresponding linear systems: the first one lies on building preconditioners by approximating Steklov-Poincaré operators on subdomains boundaries by second-order partial differential operators; the second one consists in making a nonstandard choice of jump operators at subdomains interfaces. Both ideas are tested numerically.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Natarajan, Ramesh. "Domain Decomposition using Spectral Expansions of Steklov--Poincaré Operators II: A Matrix Formulation". SIAM Journal on Scientific Computing 18, n.º 4 (julio de 1997): 1187–99. http://dx.doi.org/10.1137/s1064827594274309.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

NICAISE, SERGE y ANNA-MARGARETE SÄNDIG. "TRANSMISSION PROBLEMS FOR THE LAPLACE AND ELASTICITY OPERATORS: REGULARITY AND BOUNDARY INTEGRAL FORMULATION". Mathematical Models and Methods in Applied Sciences 09, n.º 06 (agosto de 1999): 855–98. http://dx.doi.org/10.1142/s0218202599000403.

Texto completo
Resumen
This paper is devoted to some transmission problems for the Laplace and linear elasticity operators in two- and three-dimensional nonsmooth domains. We investigate the behaviour of harmonic and linear elastic fields near geometrical singularities, especially near corner points or edges where the interface intersects with the boundaries. We give a short overview about the known results for 2-D problems and add new results for 3-D problems. Numerical results for the calculation of the singular exponents in the asymptotic expansion are presented for both two- and three-dimensional problems. Some spectral properties of the corresponding parameter depending operator bundles are also given. Furthermore, we derive boundary integral equations for the solution of the transmission problems, which lead finally to "local" pseudo-differential operator equations with corresponding Steklov–Poincaré operators on the interface. We discuss their solvability and uniqueness. The above regularity results are used in order to characterize the regularity of the solutions of these integral equations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Hao, Sijia y Per-Gunnar Martinsson. "A direct solver for elliptic PDEs in three dimensions based on hierarchical merging of Poincaré–Steklov operators". Journal of Computational and Applied Mathematics 308 (diciembre de 2016): 419–34. http://dx.doi.org/10.1016/j.cam.2016.05.013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Zhang, Yi, Varun Jain, Artur Palha y Marc Gerritsma. "The Discrete Steklov–Poincaré Operator Using Algebraic Dual Polynomials". Computational Methods in Applied Mathematics 19, n.º 3 (1 de julio de 2019): 645–61. http://dx.doi.org/10.1515/cmam-2018-0208.

Texto completo
Resumen
AbstractIn this paper, we will use algebraic dual polynomials to set up a discrete Steklov–Poincaré operator for the mixed formulation of the Poisson problem. The method will be applied in curvilinear coordinates and to a test problem which contains a singularity. Exponential convergence of the trace variable in {H^{1/2}}-norm will be shown.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Xu, Jinchao y Sheng Zhang. "Preconditioning the Poincaré-Steklov operator by using Green's function". Mathematics of Computation 66, n.º 217 (1 de enero de 1997): 125–39. http://dx.doi.org/10.1090/s0025-5718-97-00799-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Kharytonov, A. A. "Solution of elliptic inverse problems using the Poincaré-Steklov operator". International Journal of Applied Electromagnetics and Mechanics 19, n.º 1-4 (24 de abril de 2004): 63–67. http://dx.doi.org/10.3233/jae-2004-537.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Menad, M. y C. Daveau. "Comparison of several discretization methods of the Steklov–Poincaré operator". International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 19, n.º 3 (2006): 271–87. http://dx.doi.org/10.1002/jnm.611.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Nazarov, S. A. "Finite-Dimensional Approximations of the Steklov–Poincaré Operator in Periodic Elastic Waveguides". Doklady Physics 63, n.º 7 (julio de 2018): 307–11. http://dx.doi.org/10.1134/s1028335818070108.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Demarcke, Pieterjan y Hendrik Rogier. "The Poincaré–Steklov Operator in Hybrid Finite Element-Boundary Integral Equation Formulations". IEEE Antennas and Wireless Propagation Letters 10 (2011): 503–6. http://dx.doi.org/10.1109/lawp.2011.2157072.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Bobylev, A. A. "On the Positive Definiteness of the Poincaré–Steklov Operator for Elastic Half-Plane". Moscow University Mechanics Bulletin 76, n.º 6 (noviembre de 2021): 156–62. http://dx.doi.org/10.3103/s0027133021060029.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Arfi, Kevin y Anna Rozanova-Pierrat. "Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets". Discrete & Continuous Dynamical Systems - S 12, n.º 1 (2019): 1–26. http://dx.doi.org/10.3934/dcdss.2019001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Nazarov, S. A. "Finite-Dimensional Approximations of the Steklov–Poincaré Operator for the Helmholtz Equation in Periodic Waveguides". Journal of Mathematical Sciences 232, n.º 4 (7 de junio de 2018): 461–502. http://dx.doi.org/10.1007/s10958-018-3890-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Bobylev, A. A. "Computing a Transfer Function of the Poincaré–Steklov Operator for a Functionally Graded Elastic Strip". Moscow University Mechanics Bulletin 78, n.º 5 (octubre de 2023): 134–42. http://dx.doi.org/10.3103/s0027133023050023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Fokoué, Diane y Yves Bourgault. "Numerical analysis of finite element methods for the cardiac extracellular-membrane-intracellular model: Steklov–Poincaré operator and spatial error estimates". ESAIM: Mathematical Modelling and Numerical Analysis 57, n.º 4 (julio de 2023): 2595–621. http://dx.doi.org/10.1051/m2an/2023052.

Texto completo
Resumen
The extracellular-membrane-intracellular (EMI) model consists in a set of Poisson equations in two adjacent domains, coupled on interfaces with nonlinear transmission conditions involving a system of ODEs. The unusual coupling of PDEs and ODEs on the boundary makes the EMI models challenging to solve numerically. In this paper, we reformulate the problem on the interface using a Steklov–Poincaré operator. We then discretize the model in space using a finite element method (FEM). We prove the existence of a semi-discrete solution using a reformulation as an ODE system on the interface. We derive stability and error estimates for the FEM. Finally, we propose a manufactured solution and use it to perform numerical tests. The order of convergence of the numerical method agrees with what is expected on the basis of the theoretical analysis of the convergence.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Aletti, Matteo y Damiano Lombardi. "A reduced-order representation of the Poincaré-Steklov operator: an application to coupled multi-physics problems". International Journal for Numerical Methods in Engineering 111, n.º 6 (20 de enero de 2017): 581–600. http://dx.doi.org/10.1002/nme.5490.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Dobbelaere, D., D. De Zutter, J. Van Hese, J. Sercu, T. Boonen y H. Rogier. "A Calderón multiplicative preconditioner for the electromagnetic Poincaré–Steklov operator of a heterogeneous domain with scattering applications". Journal of Computational Physics 303 (diciembre de 2015): 355–71. http://dx.doi.org/10.1016/j.jcp.2015.09.052.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Hardin, Thomas J. y Christopher A. Schuh. "Fast finite element calculation of effective conductivity of random continuum microstructures: The recursive Poincaré–Steklov operator method". Journal of Computational Physics 342 (agosto de 2017): 1–12. http://dx.doi.org/10.1016/j.jcp.2017.04.021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Boeykens, Freek, Hendrik Rogier, Jan Van Hese, Jeannick Sercu y Tim Boonen. "Rigorous Analysis of Internal Resonances in 3-D Hybrid FE-BIE Formulations by Means of the Poincaré–Steklov Operator". IEEE Transactions on Microwave Theory and Techniques 61, n.º 10 (octubre de 2013): 3503–13. http://dx.doi.org/10.1109/tmtt.2013.2277990.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Vodstrčil, Petr, Dalibor Lukáš, Zdeněk Dostál, Marie Sadowská, David Horák, Oldřich Vlach, Jiří Bouchala y Jakub Kružík. "On favorable bounds on the spectrum of discretized Steklov-Poincaré operator and applications to domain decomposition methods in 2D". Computers & Mathematics with Applications 167 (agosto de 2024): 12–20. http://dx.doi.org/10.1016/j.camwa.2024.04.033.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Bobylev, A. A. "Numerical Construction of the Transform of the Kernel of the Integral Representation of the Poincaré–Steklov Operator for an Elastic Strip". Differential Equations 59, n.º 1 (enero de 2023): 119–34. http://dx.doi.org/10.1134/s0012266123010093.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Nazarov, S. A. "Finite-dimensional approximations to the Poincaré–Steklov operator for general elliptic boundary value problems in domains with cylindrical and periodic exits to infinity". Transactions of the Moscow Mathematical Society 80 (1 de abril de 2020): 1–51. http://dx.doi.org/10.1090/mosc/290.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

BOGATYREV, A. B. "On spectra of pairs of Poincaré-Steklov operators". Russian Journal of Numerical Analysis and Mathematical Modelling 8, n.º 3 (1993). http://dx.doi.org/10.1515/rnam.1993.8.3.177.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Laadj, Toufik y Khaled M’hamed-Messaoud. "Steklov–Poincaré Operator for A System of Coupled Abstract Cauchy Problems". Differential Equations and Dynamical Systems, 9 de abril de 2019. http://dx.doi.org/10.1007/s12591-019-00470-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía