Literatura académica sobre el tema "Poincaré-Steklov operators"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Poincaré-Steklov operators".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Poincaré-Steklov operators"
Novikov, R. G. y I. A. Taimanov. "Darboux Moutard Transformations and Poincaré—Steklov Operators". Proceedings of the Steklov Institute of Mathematics 302, n.º 1 (agosto de 2018): 315–24. http://dx.doi.org/10.1134/s0081543818060160.
Texto completoDeparis, Simone, Marco Discacciati, Gilles Fourestey y Alfio Quarteroni. "Fluid–structure algorithms based on Steklov–Poincaré operators". Computer Methods in Applied Mechanics and Engineering 195, n.º 41-43 (agosto de 2006): 5797–812. http://dx.doi.org/10.1016/j.cma.2005.09.029.
Texto completoDemidov, A. S. y A. S. Samokhin. "Explicit Numerically Implementable Formulas for Poincaré–Steklov Operators". Computational Mathematics and Mathematical Physics 64, n.º 2 (febrero de 2024): 237–47. http://dx.doi.org/10.1134/s0965542524020040.
Texto completoNatarajan, Ramesh. "Domain Decomposition Using Spectral Expansions of Steklov–Poincaré Operators". SIAM Journal on Scientific Computing 16, n.º 2 (marzo de 1995): 470–95. http://dx.doi.org/10.1137/0916029.
Texto completoXu, Jinchao y Shuo Zhang. "Norms of Discrete Trace Functions of (Ω) and (Ω)". Computational Methods in Applied Mathematics 12, n.º 4 (2012): 500–512. http://dx.doi.org/10.2478/cmam-2012-0025.
Texto completoACHDOU, YVES y FREDERIC NATAF. "PRECONDITIONERS FOR THE MORTAR METHOD BASED ON LOCAL APPROXIMATIONS OF THE STEKLOV-POINCARÉ OPERATOR". Mathematical Models and Methods in Applied Sciences 05, n.º 07 (noviembre de 1995): 967–97. http://dx.doi.org/10.1142/s0218202595000516.
Texto completoNatarajan, Ramesh. "Domain Decomposition using Spectral Expansions of Steklov--Poincaré Operators II: A Matrix Formulation". SIAM Journal on Scientific Computing 18, n.º 4 (julio de 1997): 1187–99. http://dx.doi.org/10.1137/s1064827594274309.
Texto completoNICAISE, SERGE y ANNA-MARGARETE SÄNDIG. "TRANSMISSION PROBLEMS FOR THE LAPLACE AND ELASTICITY OPERATORS: REGULARITY AND BOUNDARY INTEGRAL FORMULATION". Mathematical Models and Methods in Applied Sciences 09, n.º 06 (agosto de 1999): 855–98. http://dx.doi.org/10.1142/s0218202599000403.
Texto completoHao, Sijia y Per-Gunnar Martinsson. "A direct solver for elliptic PDEs in three dimensions based on hierarchical merging of Poincaré–Steklov operators". Journal of Computational and Applied Mathematics 308 (diciembre de 2016): 419–34. http://dx.doi.org/10.1016/j.cam.2016.05.013.
Texto completoZhang, Yi, Varun Jain, Artur Palha y Marc Gerritsma. "The Discrete Steklov–Poincaré Operator Using Algebraic Dual Polynomials". Computational Methods in Applied Mathematics 19, n.º 3 (1 de julio de 2019): 645–61. http://dx.doi.org/10.1515/cmam-2018-0208.
Texto completoTesis sobre el tema "Poincaré-Steklov operators"
Zreik, Mahdi. "Spectral properties of Dirac operators on certain domains". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0085.
Texto completoThis thesis mainly focused on the spectral analysis of perturbation models of the free Dirac operator, in 2-D and 3-D space.The first chapter of this thesis examines perturbation of the Dirac operator by a large mass M, supported on a domain. Our main objective is to establish, under the condition of sufficiently large mass M, the convergence of the perturbed operator, towards the Dirac operator with the MIT bag condition, in the norm resolvent sense. To this end, we introduce what we refer to the Poincaré-Steklov (PS) operators (as an analogue of the Dirichlet-to-Neumann operators for the Laplace operator) and analyze them from the microlocal point of view, in order to understand precisely the convergence rate of the resolvent. On one hand, we show that the PS operators fit into the framework of pseudodifferential operators and we determine their principal symbols. On the other hand, since we are mainly concerned with large masses, we treat our problem from the semiclassical point of view, where the semiclassical parameter is h = M^{-1}. Finally, by establishing a Krein formula relating the resolvent of the perturbed operator to that of the MIT bag operator, and using the pseudodifferential properties of the PS operators combined with the matrix structures of the principal symbols, we establish the required convergence with a convergence rate of mathcal{O}(M^{-1}).In the second chapter, we define a tubular neighborhood of the boundary of a given regular domain. We consider perturbation of the free Dirac operator by a large mass M, within this neighborhood of thickness varepsilon:=M^{-1}. Our primary objective is to study the convergence of the perturbed Dirac operator when M tends to +infty. Comparing with the first part, we get here two MIT bag limit operators, which act outside the boundary. It's worth noting that the decoupling of these two MIT bag operators can be considered as the confining version of the Lorentz scalar delta interaction of Dirac operator, supported on a closed surface. The methodology followed, as in the previous problem study the pseudodifferential properties of Poincaré-Steklov operators. However, the novelty in this problem lies in the control of these operators by tracking the dependence on the parameter varepsilon, and consequently, in the convergence as varepsilon goes to 0 and M goes to +infty. With these ingredients, we prove that the perturbed operator converges in the norm resolvent sense to the Dirac operator coupled with Lorentz scalar delta-shell interaction.In the third chapter, we investigate the generalization of an approximation of the three-dimensional Dirac operator coupled with a singular combination of electrostatic and Lorentz scalar delta-interactions supported on a closed surface, by a Dirac operator with a regular potential localized in a thin layer containing the surface. In the non-critical and non-confining cases, we show that the regular perturbed Dirac operator converges in the strong resolvent sense to the singular delta-interaction of the Dirac operator. Moreover, we deduce that the coupling constants of the limit operator depend nonlinearly on those of the potential under consideration.In the last chapter, our study focuses on the two-dimensional Dirac operator coupled with the electrostatic and Lorentz scalar delta-interactions. We treat in low regularity Sobolev spaces (H^{1/2}) the self-adjointness of certain realizations of these operators in various curve settings. The most important case in this chapter arises when the curves under consideration are curvilinear polygons, with smooth, differentiable edges and without cusps. Under certain conditions on the coupling constants, using the Fredholm property of certain boundary integral operators, and exploiting the explicit form of the Cauchy transform on non-smooth curves, we achieve the self-adjointness of the perturbed operator
Hilal, Mohammed Azeez. "Domain decomposition like methods for solving an electrocardiography inverse problem". Thesis, Nantes, 2016. http://www.theses.fr/2016NANT4060.
Texto completoThe aim of the this thesis is to study an electrocardiography (ECG) problem, modeling the cardiac electrical activity by using the stationary bidomain model. Tow types of modeling are considered :The modeling based on direct mathematical model and the modeling based on an inverse Cauchy problem. In the first case, the direct problem is solved by using domain decomposition methods and the approximation by finite elements method. For the inverse Cauchy problem of ECG, it was reformulated into a fixed point problem. In the second case, the existence and uniqueness of fixed point based on the topological degree of Leray-Schauder is showed. Then, some regularizing and stable iterative algorithms based on the techniques of domain decomposition method was developed. Finally, the efficiency and the accurate of the obtained results was discussed
Perlich, Lars. "Holomorphic Semiflows and Poincaré-Steklov Semigroups". Doctoral thesis, 2019. https://tud.qucosa.de/id/qucosa%3A36097.
Texto completoWe study a surprising connection between semiflows of holomorphic selfmaps of a simply connected domain and semigroups generated by Poincaré-Steklov operators. In particular, by means of generators of semigroups of composition operators on Banach spaces of analytic functions, we construct Dirichlet-to-Neumann and Dirichlet-to-Robin operators. This approach gives new insights to the theory of partial differential equations associated with such operators.
Held, Joachim. "Ein Gebietszerlegungsverfahren für parabolische Probleme im Zusammenhang mit Finite-Volumen-Diskretisierung". Doctoral thesis, 2006. http://hdl.handle.net/11858/00-1735-0000-0006-B39E-E.
Texto completoCapítulos de libros sobre el tema "Poincaré-Steklov operators"
Khoromskij, Boris N. y Gabriel Wittum. "Elliptic Poincaré-Steklov Operators". En Lecture Notes in Computational Science and Engineering, 37–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18777-3_2.
Texto completoQuarteroni, A. y A. Valli. "Theory and Application of Steklov-Poincaré Operators for Boundary-Value Problems". En Applied and Industrial Mathematics, 179–203. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-009-1908-2_14.
Texto completoHu, Qiya. "A New Kind of Multilevel Solver for Second Order Steklov-Poincaré Operators". En Lecture Notes in Computational Science and Engineering, 391–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75199-1_49.
Texto completoNovotny, Antonio André, Jan Sokołowski y Antoni Żochowski. "Steklov–Poincaré Operator for Helmholtz Equation". En Applications of the Topological Derivative Method, 41–50. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05432-8_3.
Texto completoGosse, Laurent. "Viscous Equations Treated with $$\mathcal{L}$$ -Splines and Steklov-Poincaré Operator in Two Dimensions". En Innovative Algorithms and Analysis, 167–95. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49262-9_6.
Texto completo